Neural networks for modeling nonlinear memoryless communication channels

This paper presents a neural network approach for modeling nonlinear memoryless communication channels. In particular, the paper studies the approximation of the nonlinear characteristics of traveling-wave tube (TWT) amplifiers used in satellite communications. The modeling is based upon multilayer neural networks, trained by the odd and even backpropagation (BP) algorithms. Simulation results demonstrate that neural network models fit the experimental data better than classical analytical TWT models,.