Hybrid solar cells with ordered TiO2 nanostructures and MEH-PPV

For use in hybrid solar cells consisting of TiO2 and poly[2-methoxy, 5-(2 � -ethyl-hexyloxy)-1,4-phenylenevinylene] (MEH-PPV), a TiO2 nanostructure which has periodic hexagonal hole arrays was fabricated using surface relief gratings on azobenzene-functionalized polymer films as a template in the sol–gel reaction of a Ti-precusor. The ordered bulk heterojunction solar cells, prepared with the TiO2 nanostructure and MEH-PPV, have a higher power conversion efficiency of 0.21% compared to bilayer and random bulk heterojunction solar cells fabricated with thin-dense TiO2 films and randomly networked TiO2 nanoparticles, respectively, under one sun with air mass 1.5 global illumination. © 2007 Elsevier B.V. All rights reserved.

[1]  David L Carroll,et al.  Meso-structure formation for enhanced organic photovoltaic cells. , 2005, Organic letters.

[2]  A. Alivisatos,et al.  Hybrid Nanorod-Polymer Solar Cells , 2002, Science.

[3]  P. C. Chui,et al.  Polymer–TiO2 solar cells: TiO2 interconnected network for improved cell performance , 2006 .

[4]  W. J. Beek,et al.  Efficient Hybrid Solar Cells from Zinc Oxide Nanoparticles and a Conjugated Polymer , 2004 .

[5]  C. Callender,et al.  Guided mode resonance filters using polymer films , 1997 .

[6]  S. Carter,et al.  Charge transport inTiO2/MEH−PPVpolymer photovoltaics , 2001 .

[7]  B. M. Henry,et al.  Study of the effect of changing the microstructure of titania layers on composite solar cell performance , 2006 .

[8]  Xiong Gong,et al.  Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology , 2005 .

[9]  F. Krebs,et al.  Hybrid solar cells based on MEH-PPV and thin film semiconductor oxides (TiO2, Nb2O5, ZnO, CeO2 and CeO2–TiO2): Performance improvement during long-time irradiation , 2006 .

[10]  Chaemin Chun,et al.  Well-ordered TiO2 nanostructures fabricated using surface relief gratings on polymer films , 2006 .

[11]  J. Kumar,et al.  Laser‐induced holographic surface relief gratings on nonlinear optical polymer films , 1995 .

[12]  Xiaoniu Yang,et al.  Nanoscale morphology of high-performance polymer solar cells. , 2005, Nano letters.

[13]  M. L. Curri,et al.  Colloidal TiO2 nanocrystals/MEH-PPV nanocomposites: photo(electro)chemical study. , 2005, The journal of physical chemistry. B.

[14]  Reuben T. Collins,et al.  Hybrid photovoltaic devices of polymer and ZnO nanofiber composites , 2006 .

[15]  Mm Martijn Wienk,et al.  Hybrid TiO2:polymer photovoltaic cells made from a titanium oxide precursor , 2004 .

[16]  Jonathan M. Ziebarth,et al.  Enhanced Hole Mobility in Regioregular Polythiophene Infiltrated in Straight Nanopores , 2005 .

[17]  Mm Martijn Wienk,et al.  Hybrid Solar Cells Using a Zinc Oxide Precursor and a Conjugated Polymer , 2005 .

[18]  A. Heeger,et al.  Infiltration of Regioregular Poly[2,2′‐(3‐hexylthiopene)] into Random Nanocrystalline TiO2 Networks , 2005 .

[19]  Valentin D. Mihailetchi,et al.  Effect of metal electrodes on the performance of polymer : fullerene bulk heterojunction solar cells , 2004 .

[20]  Donal D. C. Bradley,et al.  Efficient charge collection in hybrid polymer/TiO2 solar cells using poly(ethylenedioxythiophene)/polystyrene sulphonate as hole collector , 2005 .

[21]  Dong Young Kim,et al.  Photovoltaic characteristics of TiO 2/conjugated polymer junctions , 2003 .

[22]  J. Kumar,et al.  New photocrosslinkable polymers for second-order nonlinear optical processes , 1991 .

[23]  Sue A. Carter,et al.  Charge transfer in photovoltaics consisting of interpenetrating networks of conjugated polymer and TiO2 nanoparticles , 1999 .

[24]  Michael D. McGehee,et al.  Photovoltaic cells made from conjugated polymers infiltrated into mesoporous titania , 2003 .

[25]  P. C. Chui,et al.  Titania bicontinuous network structures for solar cell applications , 2005 .

[26]  Hans-Heinrich Hörhold,et al.  Efficient Titanium Oxide/Conjugated Polymer Photovoltaics for Solar Energy Conversion , 2000 .

[27]  Niyazi Serdar Sariciftci,et al.  Effects of Postproduction Treatment on Plastic Solar Cells , 2003 .

[28]  Yunzhi Liu,et al.  Infiltrating Semiconducting Polymers into Self‐Assembled Mesoporous Titania Films for Photovoltaic Applications , 2003 .

[29]  Dong-Young Kim,et al.  Enhancement of photovoltaic characteristics using a PEDOT interlayer in TiO2/MEHPPV heterojunction devices , 2004 .

[30]  Donal D. C. Bradley,et al.  A solid state solar cell using sol–gel processed material and a polymer , 2001 .

[31]  Paul Rochon,et al.  Optically inscribed surface relief diffraction gratings on azobenzene-containing polymers for coupling light into slab waveguides , 1996 .

[32]  Donal D. C. Bradley,et al.  Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene , 2005 .

[33]  C. Brabec,et al.  Plastic Solar Cells , 2001 .

[34]  A. J. Heeger,et al.  Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene , 1992, Science.

[35]  Peng,et al.  Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. , 1996, Physical review. B, Condensed matter.

[36]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[37]  Yang Yang,et al.  High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends , 2005 .

[38]  Jean-Michel Nunzi,et al.  Efficient polymer-based interpenetrated network photovoltaic cells , 2004 .