Neural bases of stereopsis across visual field of the alert macaque monkey.

Left and right retinal images of an object seen by the 2 eyes can occupy slightly disparate horizontal and/or vertical locations. The role of horizontal disparity (HD) in stereoscopic vision is well established, but the functional contribution of vertical disparity (VD) remains unclear. Various psychophysical studies have shown that HD and VD are used differently by the visual system depending on their location in the visual field, whether near the center of gaze or more peripheral. We show this horizontal/vertical distinction at the cellular level in monkey primary visual cortex (area V1). The range of VD encoding is reduced in central but not in the peripheral representation of the visual field. Moreover, neurons respond selectively to particular combinations of both types of disparities depending on the coded orientation as predicted by the disparity energy model. The preferred orientations of neurons near the fovea present a vertical bias that is well suited for stereopsis based on HD selectivity alone. In the periphery, instead, preferred orientations are radially biased, which allows a peripheral detector to convey the same depth signal based on either HD or VD. Such an organization has functional implications in both the perceptual and oculomotor domains.

[1]  C. Wheatstone XVIII. Contributions to the physiology of vision. —Part the first. On some remarkable, and hitherto unobserved, phenomena of binocular vision , 1962, Philosophical Transactions of the Royal Society of London.

[2]  R. L. Valois,et al.  The orientation and direction selectivity of cells in macaque visual cortex , 1982, Vision Research.

[3]  P. H. Schiller,et al.  Spatial frequency and orientation tuning dynamics in area V1 , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[4]  C. Blakemore,et al.  The neural mechanism of binocular depth discrimination , 1967, The Journal of physiology.

[5]  Charles Wheatstone On some remarkable and hitherto unobserved phenomena of binocular vision. , 1962 .

[6]  I. Ohzawa,et al.  On the neurophysiological organization of binocular vision , 1990, Vision Research.

[7]  Peng Xu,et al.  A physiological theory of depth perception from vertical disparity , 2003, Vision Research.

[8]  Gian F. Poggio Mechanisms of Stereopsis in Monkey Visual Cortex , 1995 .

[9]  Rogelio Perez,et al.  Sensitivity to horizontal and vertical disparity and orientation preference in areas V1 and V2 of the monkey , 2003, Neuroreport.

[10]  Kenneth N. Ogle,et al.  INDUCED SIZE EFFECT: I. A NEW PHENOMENON IN BINOCULAR SPACE PERCEPTION ASSOCIATED WITH THE RELATIVE SIZES OF THE IMAGES OF THE TWO EYES , 1938 .

[11]  Gregory C. DeAngelis,et al.  Depth is encoded in the visual cortex by a specialized receptive field structure , 1991, Nature.

[12]  P Fattori,et al.  Functional properties of neurons in area V1 of awake macaque monkeys: peripheral versus central visual field representation. , 1993, Archives italiennes de biologie.

[13]  I. P. Howard,et al.  Effects of stimulus size and eccentricity on horizontal and vertical vergence , 2000, Experimental Brain Research.

[14]  S. -M. Lu,et al.  Latency variability of responses to visual stimuli in cells of the cat's lateral geniculate nucleus , 2004, Experimental Brain Research.

[15]  Y Chen,et al.  Modeling V1 disparity tuning to time-varying stimuli. , 2001, Journal of neurophysiology.

[16]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[17]  R. Bauer,et al.  Complementary global maps for orientation coding in upper and lower layers of the monkey's foveal striate cortex , 2004, Experimental Brain Research.

[18]  Nicholas I. Fisher,et al.  Statistical Analysis of Circular Data , 1993 .

[19]  Margaret S. Livingstone,et al.  Two-Dimensional Substructure of Stereo and Motion Interactions in Macaque Visual Cortex , 2003, Neuron.

[20]  Michael Kühl,et al.  An unexpected specialization for horizontal disparity in primate primary visual cortex , 2022 .

[21]  K. Prazdny,et al.  Vertical disparity nulling in random-dot stereograms , 1987, Biological Cybernetics.

[22]  M F Bradshaw,et al.  Vertical disparities, differential perspective and binocular stereopsis , 1993, Nature.

[23]  Olivier J. Blanchard The Basic Mechanisms , 1998 .

[24]  Scott B. Stevenson,et al.  Human stereo matching is not restricted to epipolar lines , 1997, Vision Research.

[25]  S. Levay,et al.  Ocular dominance and disparity coding in cat visual cortex , 1988, Visual Neuroscience.

[26]  Bruce G. Cumming,et al.  Understanding the Cortical Specialization for Horizontal Disparity , 2004, Neural Computation.

[27]  A. Leventhal,et al.  Relationship between preferred orientation and receptive field position of neurons in cat striate cortex , 1983, The Journal of comparative neurology.

[28]  Ian P. Howard,et al.  Cycloversion and cyclovergence: The effects of the area and position of the visual display , 2007, Experimental Brain Research.

[29]  Bart Farell,et al.  Two-dimensional matches from one-dimensional stimulus components in human stereopsis , 1998, Nature.

[30]  G. Poggio,et al.  Stereoscopic mechanisms in monkey visual cortex: binocular correlation and disparity selectivity , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[31]  N. Fisher,et al.  Statistical Analysis of Circular Data , 1993 .

[32]  James A. Crowell,et al.  Horizontal and vertical disparity, eye position, and stereoscopic slant perception , 1999, Vision Research.

[33]  Carlos Acuña,et al.  Cell responses to vertical and horizontal retinal disparities in the monkey visual cortex , 1993, Neuroscience Letters.

[34]  S. Celebrini,et al.  Gaze direction controls response gain in primary visual-cortex neurons , 1999, Nature.

[35]  J. E. W. Mayhew,et al.  A computational model of binocular depth perception , 1982, Nature.

[36]  I. Ohzawa,et al.  Stereoscopic depth discrimination in the visual cortex: neurons ideally suited as disparity detectors. , 1990, Science.

[37]  S. Thorpe,et al.  Dynamics of orientation coding in area V1 of the awake primate , 1993, Visual Neuroscience.

[38]  B. C. Motter,et al.  Responses of neurons in visual cortex (V1 and V2) of the alert macaque to dynamic random-dot stereograms , 1985, Vision Research.

[39]  G C DeAngelis,et al.  The physiology of stereopsis. , 2001, Annual review of neuroscience.

[40]  T. J. Breen,et al.  Biostatistical Analysis (2nd ed.). , 1986 .

[41]  R. Mansfield,et al.  Neural Basis of Orientation Perception in Primate Vision , 1974, Science.

[42]  D. Whitteridge,et al.  The representation of the visual field on the cerebral cortex in monkeys , 1961, The Journal of physiology.

[43]  Y Trotter,et al.  Cortical Representation of Visual Three-Dimensional Space , 1995, Perception.

[44]  T. Poggio,et al.  Vertical image registration in stereopsis , 1984, Vision Research.

[45]  Scott B. Stevenson,et al.  Human Stereo Matching is not Restricted to , 1997 .

[46]  G. Poggio,et al.  Binocular interaction and depth sensitivity in striate and prestriate cortex of behaving rhesus monkey. , 1977, Journal of neurophysiology.

[47]  R Held,et al.  Monkeys Show an Oblique Effect , 1979, Perception.

[48]  R Perez,et al.  Neural mechanisms underlying stereoscopic vision , 1998, Progress in Neurobiology.

[49]  K N OGLE,et al.  Observations on vertical divergences and hyperphorias. , 1953, A.M.A. archives of ophthalmology.

[50]  P. O. Bishop,et al.  Analysis of retinal correspondence by studying receptive fields of rinocular single units in cat striate cortex , 2004, Experimental Brain Research.

[51]  J. Porrill,et al.  Stereopsis, vertical disparity and relief transformations , 1995, Vision Research.

[52]  Dario L. Ringach,et al.  Computational Modeling of Orientation Tuning Dynamics in Monkey Primary Visual Cortex , 2000, Journal of Computational Neuroscience.

[53]  Sabine Kastner,et al.  Neurons with radial receptive fields in monkey area V4A: evidence of a subdivision of prelunate gyrus based on neuronal response properties , 2002, Experimental Brain Research.

[54]  B. Anderson Depth perception , 2008 .

[55]  A. Parker,et al.  Range and mechanism of encoding of horizontal disparity in macaque V1. , 2002, Journal of neurophysiology.

[56]  B. Julesz Foundations of Cyclopean Perception , 1971 .

[57]  I. Pigarev,et al.  Distant cortical locations of the upper and lower quadrants of the visual field represented by neurons with elongated and radially oriented receptive fields , 2004, Experimental Brain Research.

[58]  A. Parker,et al.  Quantitative analysis of the responses of V1 neurons to horizontal disparity in dynamic random-dot stereograms. , 2002, Journal of neurophysiology.

[59]  J. Douglas Crawford,et al.  The motor side of depth vision , 2001, Nature.

[60]  C. Gross,et al.  Visual topography of V2 in the macaque , 1981, The Journal of comparative neurology.

[61]  B. Gillam,et al.  The induced effect, vertical disparity, and stereoscopic theory , 1983, Perception & psychophysics.

[62]  Bevil R. Conway,et al.  Receptive Fields of Disparity-Tuned Simple Cells in Macaque V1 , 2003, Neuron.

[63]  Kenneth N. Ogle,et al.  The Induced Size Effect , 1940 .

[64]  Shiping Zhu,et al.  Neurons in parafoveal areas V1 and V2 encode vertical and horizontal disparities. , 2002, Journal of neurophysiology.

[65]  P. O. Bishop,et al.  Binocular single vision and depth discrimination. Receptive field disparities for central and peripheral vision and binocular interaction on peripheral single units in cat striate cortex , 2006, Experimental Brain Research.

[66]  John H. R. Maunsell,et al.  The visual field representation in striate cortex of the macaque monkey: Asymmetries, anisotropies, and individual variability , 1984, Vision Research.

[67]  G. A. Orban,et al.  Quantitative study of striate single unit responses in monkeys performing an orientation discrimination task , 2004, Experimental Brain Research.