Numerical methods for nanophotonics: standard problems and future challenges

Nanoscale photonic systems involve a broad variety of light-matter interaction regimes beyond the diffraction limit and have opened the path for a variety of application opportunities in sensing, solid-state lighting, light harvesting, and optical signal processing. The need for numerical modeling is central for the understanding, control, and design of plasmonic and photonic nanostructures. Recently, the increasing sophistication of nanophotonic systems and processes, ranging from simple plasmonic nanostructures to multiscale and complex photonic devices, has been calling for highly efficient numerical simulation tools. This article reviews the state of the art in numerical methods for nanophotonics and describes which method is the best suited for specific problems. The widespread approaches derived from classical electrodynamics such as finite differences in time domain, finite elements, surface integral, volume integral, and hybrid methods are reviewed and illustrated by application examples. Their potential for efficient simulation of nanophotonic systems, such as those involving light propagation, localization, scattering, or multiphysical systems is assessed. The numerical modeling of complex systems including nonlinearity, nonlocal and quantum effects as well [GRAPHICS] as new materials such as graphene is discussed in the perspective of actual and future challenges for computational nanophotonics.

[1]  F. G. D. Abajo,et al.  Retarded field calculation of electron energy loss in inhomogeneous dielectrics , 2002 .

[2]  R. H. Ritchie,et al.  The surface plasmon dispersion relation for an electron gas , 1966 .

[3]  Reuven Gordon,et al.  Probing the quantum tunneling limit of plasmonic enhancement by third harmonic generation. , 2014, Nano letters.

[4]  F. G. D. Abajo,et al.  MULTIPLE SCATTERING OF RADIATION IN CLUSTERS OF DIELECTRICS , 1999 .

[5]  K. Loh,et al.  Graphene photonics, plasmonics, and broadband optoelectronic devices. , 2012, ACS nano.

[6]  P. Nordlander,et al.  Plasmons in strongly coupled metallic nanostructures. , 2011, Chemical reviews.

[7]  Rob Remis,et al.  On the relation between FDTD and Fibonacci polynomials , 2011, Journal of Computational Physics.

[8]  Jian-Ming Jin,et al.  The Finite Element Method in Electromagnetics , 1993 .

[9]  Matthew Pelton,et al.  Quantum-dot-induced transparency in a nanoscale plasmonic resonator. , 2010, Optics express.

[10]  Jeremy J. Baumberg,et al.  Revealing the quantum regime in tunnelling plasmonics , 2012, Nature.

[11]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[12]  Luis Landesa,et al.  Method-of-moments formulation for the analysis of plasmonic nano-optical antennas. , 2011, Journal of the Optical Society of America. A, Optics, image science, and vision.

[13]  Javier Aizpurua,et al.  Bridging quantum and classical plasmonics with a quantum-corrected model , 2012, Nature Communications.

[14]  Alexey V. Krasavin,et al.  Nonperturbative hydrodynamic model for multiple harmonics generation in metallic nanostructures , 2014, 1405.4903.

[15]  Jian-Ming Jin,et al.  A novel dual-field time-domain finite-element domain-decomposition method for computational electromagnetics , 2006 .

[16]  J. Greffet,et al.  Optical patch antennas for single photon emission using surface plasmon resonances. , 2010, Physical review letters.

[17]  Guy A. E. Vandenbosch,et al.  Computational Electromagnetics in Plasmonics , 2012 .

[18]  Vincenzo Savona,et al.  Automated optimization of photonic crystal slab cavities , 2014, Scientific Reports.

[19]  M. Pellarin,et al.  Size effects in the optical properties of AunAgn embedded clusters , 2000 .

[20]  Javier Aizpurua,et al.  Quantum effects in the optical response of extended plasmonic gaps: validation of the quantum corrected model in core-shell nanomatryushkas. , 2015, Optics express.

[21]  P. Ajayan,et al.  Gated tunability and hybridization of localized plasmons in nanostructured graphene. , 2013, ACS nano.

[22]  Waymond R. Scott,et al.  Numerical dispersion of higher order nodal elements in the finite-element method , 1996 .

[23]  Gennady Shvets,et al.  Plasmonic Nanolaser Using Epitaxially Grown Silver Film , 2012, Science.

[24]  Jérémy Butet,et al.  Fano resonances in the nonlinear optical response of coupled plasmonic nanostructures. , 2014, Optics express.

[25]  M. Paulus,et al.  Light propagation and scattering in stratified media: a Green’s tensor approach , 2001 .

[26]  J. M. Taboada,et al.  Comparison of surface integral equation formulations for electromagnetic analysis of plasmonic nanoscatterers. , 2012, Optics express.

[27]  Martti Kauranen,et al.  Boundary element method for surface nonlinear optics of nanoparticles. , 2011, Optics express.

[28]  Martti Kauranen,et al.  Enforcing symmetries in boundary element formulation of plasmonic and second-harmonic scattering problems. , 2014, Journal of the Optical Society of America. A, Optics, image science, and vision.

[29]  Eric C Le Ru,et al.  Investigation of particle shape and size effects in SERS using T-matrix calculations. , 2009, Physical chemistry chemical physics : PCCP.

[30]  Olivier Parriaux,et al.  Tunable grating-assisted surface plasmon resonance by use of nano-polymer dispersed liquid crystal electro-optical material , 2007 .

[31]  Kerry Vahala,et al.  Cavity opto-mechanics. , 2007, Optics express.

[32]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[33]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[34]  F. T. Vasko,et al.  Transient response of intrinsic graphene under ultrafast interband excitation , 2010 .

[35]  O. Martin,et al.  Accurate and efficient computation of the Green's tensor for stratified media , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[36]  Te-kao Wu,et al.  Scattering from arbitrarily‐shaped lossy dielectric bodies of revolution , 1977 .

[37]  Garnett W. Bryant,et al.  The Morphology of Narrow Gaps Modifies the Plasmonic Response , 2015 .

[38]  Weng Cho Chew,et al.  A 3D perfectly matched medium from modified maxwell's equations with stretched coordinates , 1994 .

[39]  R. J. Luebbers,et al.  Piecewise linear recursive convolution for dispersive media using FDTD , 1996 .

[40]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[41]  Bruce T. Draine,et al.  The discrete-dipole approximation and its application to interstellar graphite grains , 1988 .

[43]  J. M. Taboada,et al.  Solution of large-scale plasmonic problems with the multilevel fast multipole algorithm. , 2012, Optics letters.

[44]  E. K. Miller,et al.  A selective survey of computational electromagnetics , 1988 .

[45]  Kurt Busch,et al.  Higher-order time-domain methods for the analysis of nano-photonic systems , 2009 .

[46]  O. Martin,et al.  Accurate and versatile modeling of electromagnetic scattering on periodic nanostructures with a surface integral approach. , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.

[47]  F. D. Abajo,et al.  Spatial Nonlocality in the Optical Response of Metal Nanoparticles , 2011 .

[48]  O. Martin,et al.  Surface integral formulation for 3D simulations of plasmonic and high permittivity nanostructures. , 2009, Journal of the Optical Society of America. A, Optics, image science, and vision.

[49]  U. Leonhardt,et al.  Transformation Optics and the Geometry of Light , 2008, 0805.4778.

[50]  Yang Wu,et al.  Measurement of the optical conductivity of graphene. , 2008, Physical review letters.

[51]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[52]  Benjamin Gallinet,et al.  Relation between near-field and far-field properties of plasmonic Fano resonances. , 2011, Optics express.

[53]  B. Draine,et al.  Discrete-Dipole Approximation For Scattering Calculations , 1994 .

[54]  Harald Giessen,et al.  Quantitative modeling of the third harmonic emission spectrum of plasmonic nanoantennas. , 2012, Nano letters.

[55]  Raphael C. Pooser,et al.  Plasmonic Trace Sensing below the Photon Shot Noise Limit , 2016 .

[56]  George C Schatz,et al.  Optical properties of nanowire dimers with a spatially nonlocal dielectric function. , 2010, Nano letters.

[57]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[58]  Christian Jonin,et al.  Origin of optical second-harmonic generation in spherical gold nanoparticles: Local surface and nonlocal bulk contributions , 2010 .

[59]  Jian-Ming Jin,et al.  A New Explicit Time-Domain Finite-Element Method Based on Element-Level Decomposition , 2006, IEEE Transactions on Antennas and Propagation.

[60]  David R Smith,et al.  Clarifying the origin of third-harmonic generation from film-coupled nanostripes. , 2015, Optics express.

[61]  Guangyuan Li,et al.  A room temperature low-threshold ultraviolet plasmonic nanolaser , 2014, Nature Communications.

[62]  Emil Prodan,et al.  Structural Tunability of the Plasmon Resonances in Metallic Nanoshells , 2003 .

[63]  W. Chew,et al.  Study on spontaneous emission in complex multilayered plasmonic system via surface integral equation approach with layered medium Green's function. , 2012, Optics express.

[64]  Shanhui Fan,et al.  Light management for photovoltaics using high-index nanostructures. , 2014, Nature materials.

[65]  Yunuen Montelongo,et al.  Plasmonic nanoparticle scattering for color holograms , 2014, Proceedings of the National Academy of Sciences.

[66]  Philip S Low,et al.  In vitro and in vivo two-photon luminescence imaging of single gold nanorods. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[67]  A. Taflove,et al.  Finite-difference time-domain model of lasing action in a four-level two-electron atomic system. , 2004, Optics express.

[68]  Giovanni Miano,et al.  Surface integral method for second harmonic generation in metal nanoparticles including both local-surface and nonlocal-bulk sources , 2013 .

[69]  B. Draine,et al.  Discrete-dipole approximation for periodic targets: theory and tests. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[70]  Limin Tong,et al.  Nanowire plasmonic waveguides, circuits and devices , 2013 .

[71]  Martijn Wubs,et al.  Modified field enhancement and extinction by plasmonic nanowire dimers due to nonlocal response. , 2011, Optics express.

[72]  Qing-Hua Xu,et al.  Excitation Nature of Two-Photon Photoluminescence of Gold Nanorods and Coupled Gold Nanoparticles Studied by Two-Pulse Emission Modulation Spectroscopy. , 2013, The journal of physical chemistry letters.

[73]  Suljo Linic,et al.  Photochemical transformations on plasmonic metal nanoparticles. , 2015, Nature materials.

[74]  George C Schatz,et al.  Lasing action in strongly coupled plasmonic nanocavity arrays. , 2013, Nature nanotechnology.

[75]  Christophe Ballif,et al.  Extended light scattering model incorporating coherence for thin-film silicon solar cells , 2011 .

[76]  Emil Prodan,et al.  Electronic Structure and Optical Properties of Gold Nanoshells , 2003 .

[77]  Benjamin Gallinet,et al.  Scattering on plasmonic nanostructures arrays modeled with a surface integral formulation , 2010 .

[78]  Christian Hafner,et al.  Post-modern Electromagnetics: Using Intelligent MaXwell Solvers , 1999 .

[79]  T. Krauss Why do we need slow light , 2008 .

[80]  Kurt Busch,et al.  Simulation of optical resonators using DGTD and FDTD , 2009 .

[81]  Michael Scalora,et al.  Nonlinear quantum tunneling effects in nanoplasmonic environments: two-photon absorption and harmonic generation , 2014 .

[82]  Sukosin Thongrattanasiri,et al.  Optical field enhancement by strong plasmon interaction in graphene nanostructures. , 2013, Physical review letters.

[83]  Ekardt Size-dependent photoabsorption and photoemission of small metal particles. , 1985, Physical review. B, Condensed matter.

[84]  F.Michael Kahnert,et al.  Numerical methods in electromagnetic scattering theory , 2003 .

[85]  Bernhard Lamprecht,et al.  Near-field observation of surface plasmon polariton propagation on thin metal stripes , 2001 .

[86]  Benjamin Gallinet,et al.  Plasmonic radiance: probing structure at the Ångström scale with visible light. , 2013, Nano letters.

[87]  O. Martin,et al.  A library for computing the filtered and non-filtered 3D Green"s tensor associated with infinite homogeneous space and surfaces , 2002 .

[88]  Eytan Barouch,et al.  Three-dimensional nonplanar lithography simulation using a periodic fast multipole method , 1997, Advanced Lithography.

[89]  Tuan Vo-Dinh,et al.  Narrow groove plasmonic nano-gratings for surface plasmon resonance sensing , 2011, Optics express.

[90]  F. Bongard,et al.  Integral-Equation Analysis of 3-D Metallic Objects Arranged in 2-D Lattices Using the Ewald Transformation , 2006, IEEE Transactions on Microwave Theory and Techniques.

[91]  M. Lukin Colloquium: Trapping and manipulating photon states in atomic ensembles , 2003 .

[92]  Jukka Sarvas,et al.  TRANSLATION PROCEDURES FOR BROADBAND MLFMA , 2005 .

[93]  Zhe Yuan,et al.  Emergence of collective plasmon excitation in a confined one-dimensional electron gas , 2005 .

[94]  Olivier J. F. Martin,et al.  Iterative scheme for computing exactly the total field propagating in dielectric structures of arbitrary shape , 1994 .

[95]  Luis M. Liz-Marzán,et al.  Modeling the Optical Response of Highly Faceted Metal Nanoparticles with a Fully 3D Boundary Element Method , 2008 .

[96]  Giorgio Volpe,et al.  Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna , 2010, Science.

[97]  F. Koppens,et al.  Graphene plasmonics: a platform for strong light-matter interactions. , 2011, Nano letters.

[98]  Seokho Yun,et al.  Near-ideal optical metamaterial absorbers with super-octave bandwidth. , 2014, ACS nano.

[99]  Y. Rahmat-Samii,et al.  A novel patch antenna with switchable slot (PASS): dual-frequency operation with reversed circular polarizations , 2006, IEEE Transactions on Antennas and Propagation.

[100]  Hiromi Okamoto,et al.  Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes. , 2005, The journal of physical chemistry. B.

[101]  Naomi J Halas,et al.  Three-dimensional nanostructures as highly efficient generators of second harmonic light. , 2011, Nano letters.

[102]  Lin Wu,et al.  Fowler-nordheim tunneling induced charge transfer plasmons between nearly touching nanoparticles , 2013, 2013 Abstracts IEEE International Conference on Plasma Science (ICOPS).

[103]  M. Wegener,et al.  Self-consistent calculation of metamaterials with gain , 2009, 0907.0888.

[104]  G. Mur Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic-Field Equations , 1981, IEEE Transactions on Electromagnetic Compatibility.

[105]  Benjamin Gallinet,et al.  Second-harmonic generation from periodic arrays of arbitrary shape plasmonic nanostructures: a surface integral approach , 2013 .

[106]  Luca Dal Negro,et al.  Genetically engineered plasmonic nanoarrays. , 2012, Nano letters.

[107]  Kazuaki Sakoda,et al.  Optical Properties of Photonic Crystals , 2001 .

[108]  Philippe Lalanne,et al.  Computation of the near-field pattern with the coupled-wave method for transverse magnetic polarization , 1998 .

[109]  Garnett W. Bryant,et al.  Plasmonic properties of metallic nanoparticles: The effects of size quantization , 2010, CLEO: 2011 - Laser Science to Photonic Applications.

[110]  Olivier J. F. Martin,et al.  Electromagnetic scattering in polarizable backgrounds , 1998 .

[111]  Manninen,et al.  Electronic polarizability of small metal spheres. , 1985, Physical review. B, Condensed matter.

[112]  Zakya H. Kafafi,et al.  Organic Photovoltaics: Plasmonic‐Enhanced Organic Photovoltaics: Breaking the 10% Efficiency Barrier (Adv. Mater. 17/2013) , 2013 .

[113]  M. Soljavci'c,et al.  Plasmonics in graphene at infrared frequencies , 2009, 0910.2549.

[114]  F. Xia,et al.  Plasmonics of coupled graphene micro-structures , 2012, 1205.6841.

[115]  N. D. Mermin,et al.  Lindhard Dielectric Function in the Relaxation-Time Approximation , 1970 .

[116]  Thomas Wriedt,et al.  Comparison of computational scattering methods , 1998 .

[117]  B. Draine,et al.  Application of fast-Fourier-transform techniques to the discrete-dipole approximation. , 1991, Optics letters.

[118]  Luis M Liz-Marzán,et al.  Unveiling nanometer scale extinction and scattering phenomena through combined electron energy loss spectroscopy and cathodoluminescence measurements. , 2015, Nano letters.

[119]  George C Schatz,et al.  Electronic structure methods for studying surface-enhanced Raman scattering. , 2008, Chemical Society reviews.

[120]  N. Yu,et al.  Flat optics with designer metasurfaces. , 2014, Nature materials.

[121]  J. Kottmann,et al.  Accurate solution of the volume integral equation for high-permittivity scatterers , 2000 .

[122]  Guy A. E. Vandenbosch,et al.  On the use of the Method of Moments in plasmonic applications , 2010, 2010 URSI International Symposium on Electromagnetic Theory.

[123]  John E. Sipe,et al.  V Foundations of the Macroscopic Electromagnetic Theory of Dielectric Media , 1977 .

[124]  R. V. Van Duyne,et al.  Localized surface plasmon resonance spectroscopy and sensing. , 2007, Annual review of physical chemistry.

[125]  N. Peres,et al.  Observation of intra- and inter-band transitions in the transient optical response of graphene , 2011, 1104.3104.

[126]  Thierry Laroche,et al.  Three-dimensional finite-difference time-domain study of enhanced second-harmonic generation at the end of a apertureless scanning near-field optical microscope metal tip , 2005 .

[127]  B. Englert,et al.  Cavity quantum electrodynamics , 2006 .

[128]  Harald Giessen,et al.  Third Harmonic Mechanism in Complex Plasmonic Fano Structures , 2014, ACS photonics.

[129]  Romain Quidant,et al.  Nanoscale control of optical heating in complex plasmonic systems. , 2010, ACS nano.

[130]  N. Khlebtsov T-matrix method in plasmonics: An overview , 2013 .

[131]  Peter M. van den Berg,et al.  Convergent Born series for large refractive indices , 1990 .

[132]  F. Reinhart,et al.  Witnessing the early semiconductor laser development at Bell Telephone Laboratories, Inc. , 2012 .

[133]  F. D. Abajo,et al.  Graphene Plasmonics: Challenges and Opportunities , 2014, 1402.1969.

[134]  M. Gonçalves Plasmonic nanoparticles: fabrication, simulation and experiments , 2014 .

[135]  P. Chaumet,et al.  Generalization of the Coupled Dipole Method to Periodic Structures , 2003, physics/0305051.

[136]  Lukas Novotny,et al.  Field Computations of Optical Antennas , 2007 .

[137]  C. Hafner The generalized multipole technique for computational electromagnetics , 1990 .

[138]  Huanyang Chen,et al.  Conformal transformation optics , 2014, Nature Photonics.

[139]  Harald Giessen,et al.  Nanoantenna-enhanced gas sensing in a single tailored nanofocus , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[140]  Ulrich Hohenester,et al.  MNPBEM - A Matlab toolbox for the simulation of plasmonic nanoparticles , 2011, Comput. Phys. Commun..

[141]  Emil Prodan,et al.  Quantum description of the plasmon resonances of a nanoparticle dimer. , 2009, Nano letters.

[142]  P. Yla-Oijala,et al.  Application of combined field Integral equation for electromagnetic scattering by dielectric and composite objects , 2005, IEEE Transactions on Antennas and Propagation.

[143]  Fernando Obelleiro,et al.  Toward ultimate nanoplasmonics modeling. , 2014, ACS nano.

[144]  T. A. Luce,et al.  Theory for the nonlinear optical response at noble-metal surfaces with nonequilibrium electrons , 1997 .

[145]  M. König,et al.  Discontinuous Galerkin methods in nanophotonics , 2011 .

[146]  P. Lalanne,et al.  Highly improved convergence of the coupled-wave method for TM polarization and conical mountings , 1996, Diffractive Optics and Micro-Optics.

[147]  Peter Nordlander,et al.  Influence of cross sectional geometry on surface plasmon polariton propagation in gold nanowires. , 2014, ACS nano.

[148]  L. Falkovsky,et al.  Space-time dispersion of graphene conductivity , 2006, cond-mat/0606800.

[149]  Peter Nordlander,et al.  Gold nanobelts as high confinement plasmonic waveguides. , 2013, Nano letters.

[150]  Thomas Rylander,et al.  Stable FEM-FDTD hybrid method for Maxwell's equations , 2000 .

[151]  Fuchs,et al.  Nonlocal response of a small coated sphere. , 1988, Physical review. B, Condensed matter.

[152]  B. Chichkov,et al.  Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region. , 2012, Nano letters.

[153]  David R. Smith,et al.  Third-Harmonic Generation Enhancement by Film-Coupled Plasmonic Stripe Resonators , 2014 .

[154]  Jin-Fa Lee,et al.  A perfectly matched anisotropic absorber for use as an absorbing boundary condition , 1995 .

[155]  L. Falkovsky,et al.  Optical far-infrared properties of a graphene monolayer and multilayer , 2007, 0707.1386.

[156]  F J García de Abajo,et al.  Optical properties of gold nanorings. , 2003, Physical review letters.

[157]  S. Gedney,et al.  Full wave analysis of microwave monolithic circuit devices using a generalized Yee-algorithm based on an unstructured grid , 1996 .

[158]  P. Flatau,et al.  Improvements in the discrete-dipole approximation method of computing scattering and absorption. , 1997, Optics letters.

[159]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[160]  F. D. Abajo,et al.  Nonlocal Effects in the Plasmons of Strongly Interacting Nanoparticles, Dimers, and Waveguides , 2008, 0802.0040.

[161]  M. A. Stuchly,et al.  Simple treatment of multi-term dispersion in FDTD , 1997 .

[162]  Stephen K. Gray,et al.  Propagation of light in metallic nanowire arrays: Finite-difference time-domain studies of silver cylinders , 2003 .

[163]  M. Vouvakis,et al.  The adaptive cross approximation algorithm for accelerated method of moments computations of EMC problems , 2005, IEEE Transactions on Electromagnetic Compatibility.

[164]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[165]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[166]  H. Bechtel,et al.  Graphene plasmonics for tunable terahertz metamaterials. , 2011, Nature nanotechnology.

[167]  Chii-Wann Lin,et al.  Surface plasmon effects on two photon luminescence of gold nanorods. , 2009, Optics express.

[168]  S. Thongrattanasiri,et al.  Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons. , 2012, ACS nano.

[169]  Sukosin Thongrattanasiri,et al.  Complete optical absorption in periodically patterned graphene. , 2012, Physical review letters.

[170]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[171]  Yingzhou Huang,et al.  Branched silver nanowires as controllable plasmon routers. , 2010, Nano letters.

[172]  Mario Bertolotti,et al.  Engineering the second harmonic generation pattern from coupled gold nanowires , 2010 .

[173]  Andrew Zangwill,et al.  Density-functional approach to local-field effects in finite systems: Photoabsorption in the rare gases , 1980 .

[174]  Katherine Han,et al.  Numerical Modeling of Sub-Wavelength Anti-Reflective Structures for Solar Module Applications , 2014, Nanomaterials.

[175]  Huigao Duan,et al.  Printing colour at the optical diffraction limit. , 2012, Nature nanotechnology.

[176]  Paolo Vavassori,et al.  Magnetoplasmonic design rules for active magneto-optics. , 2014, Nano letters.

[177]  L. Liz‐Marzán,et al.  Modelling the optical response of gold nanoparticles. , 2008, Chemical Society reviews.

[178]  H. Herzig,et al.  Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation , 2010 .

[179]  Benjamin Gallinet,et al.  Analysis of photonic crystal defect modes by maximal symmetrization and reduction , 2010 .

[180]  A. Siegman,et al.  Laser beams and resonators: the 1960s , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[181]  A. N. Grigorenko,et al.  Graphene plasmonics , 2012, Nature Photonics.

[182]  David R. Smith,et al.  Second-Harmonic Generation in Metallic Nanoparticles: Clarification of the Role of the Surface , 2012 .

[183]  Stefan A. Maier,et al.  Quantum Plasmonics , 2016, Proceedings of the IEEE.

[184]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[185]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[186]  Michel Orrit,et al.  Third-harmonic generation from single gold nanoparticles. , 2005, Nano letters.

[187]  Olivier J. F. Martin,et al.  Scanning near-field optical microscopy with aperture probes: Fundamentals and applications , 2000 .

[188]  Frank Claeyssen,et al.  A new family of finite elements: the pyramidal elements , 1996 .

[189]  A. Borisov,et al.  Robust subnanometric plasmon ruler by rescaling of the nonlocal optical response. , 2013, Physical review letters.

[190]  Anne Sentenac,et al.  Simulation of light scattering by multilayer cross-gratings with the coupled dipole method , 2009 .

[191]  Marco Finazzi,et al.  Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration , 2009 .

[192]  Pengyu Fan,et al.  Tuning the color of silicon nanostructures. , 2010, Nano letters.

[193]  J. Perruisseau-Carrier,et al.  Design of tunable biperiodic graphene metasurfaces , 2012, 1210.5611.

[194]  Endre Süli,et al.  Error estimates for Yee's method on non-uniform grids , 1994 .

[195]  Xing Zhu,et al.  Active tunable absorption enhancement with graphene nanodisk arrays. , 2014, Nano letters.

[196]  C. Hafner,et al.  Comparison of Numerical Methods for the Analysis of Plasmonic Structures , 2009 .

[197]  Mario Bertolotti,et al.  Second harmonic generation from 3D nanoantennas: on the surface and bulk contributions by far-field pattern analysis. , 2011, Optics express.

[198]  Romain Quidant,et al.  Thermo‐plasmonics: using metallic nanostructures as nano‐sources of heat , 2013 .

[199]  Girard,et al.  Generalized Field Propagator for Electromagnetic Scattering and Light Confinement. , 1995, Physical review letters.

[200]  Olivier J. F. Martin,et al.  Contrast mechanisms in high-resolution contact lithography: A comparative study , 2001 .

[201]  Christian Santschi,et al.  Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas. , 2010, Nano letters.

[202]  Olivier J. F. Martin,et al.  Light-coupling masks for lensless, sub-wavelength optical lithography , 1998 .

[203]  Roger F. Harrington,et al.  Field computation by moment methods , 1968 .

[204]  Chih-Ming Wang,et al.  High-efficiency broadband anomalous reflection by gradient meta-surfaces. , 2012, Nano letters.

[205]  Fuchs,et al.  Multipolar response of small metallic spheres: Nonlocal theory. , 1987, Physical review. B, Condensed matter.

[206]  Jennifer A. Dionne,et al.  Observation of quantum tunneling between two plasmonic nanoparticles. , 2013, Nano letters.

[207]  Pierre-François Brevet,et al.  Multipolar second-harmonic generation in noble metal nanoparticles , 2008 .

[208]  Naomi J. Halas,et al.  Photodetection with Active Optical Antennas , 2011, Science.

[209]  Thomas Taubner,et al.  Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles. , 2007, Physical review letters.

[210]  O. Martin,et al.  Increasing the performance of the coupled-dipole approximation: a spectral approach , 1998 .

[211]  S. Sarma,et al.  Dielectric function, screening, and plasmons in two-dimensional graphene , 2006, cond-mat/0610561.

[212]  D. Wilton,et al.  Electromagnetic scattering by surfaces of arbitrary shape , 1980 .

[213]  Emil Prodan,et al.  Quantum plasmonics: optical properties and tunability of metallic nanorods. , 2010, ACS nano.

[214]  Stephen K. Gray,et al.  Theory and modeling of light interactions with metallic nanostructures , 2007 .

[215]  Jérémy Butet,et al.  Ultrasensitive optical shape characterization of gold nanoantennas using second harmonic generation. , 2013, Nano letters.

[216]  F. Guinea,et al.  Dynamical polarization of graphene at finite doping , 2006 .

[217]  Joseph B. Herzog,et al.  Thermoplasmonics: quantifying plasmonic heating in single nanowires. , 2014, Nano letters.

[218]  Michael Kahnert,et al.  Light scattering by a cube: Accuracy limits of the discrete dipole approximation and the T-matrix method , 2013 .

[219]  Olivier J F Martin,et al.  Excitation and reemission of molecules near realistic plasmonic nanostructures. , 2011, Nano letters.

[220]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[221]  Pierre Berini,et al.  Surface plasmon–polariton amplifiers and lasers , 2011, Nature Photonics.

[222]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[223]  Feng Ding,et al.  Computational Studies of Catalytic Particles for Carbon Nanotube Growth , 2009 .

[224]  Girard,et al.  Computing the optical near-field distributions around complex subwavelength surface structures: A comparative study of different methods. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[225]  Peter Nordlander,et al.  Solar vapor generation enabled by nanoparticles. , 2013, ACS nano.

[226]  M. Mishchenko,et al.  Reprint of: T-matrix computations of light scattering by nonspherical particles: a review , 1996 .

[227]  Jian-Ming Jin,et al.  Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies , 1998 .

[228]  T. Gaylord,et al.  Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings , 1995 .

[229]  Beck Self-consistent calculation of the eigenfrequencies for the electronic excitations in small jellium spheres. , 1987, Physical review. B, Condensed matter.

[230]  Martijn Wubs,et al.  Green's function surface-integral method for nonlocal response of plasmonic nanowires in arbitrary dielectric environments , 2013, 1307.7183.

[231]  Christine M Aikens,et al.  Electronic structure and TDDFT optical absorption spectra of silver nanorods. , 2009, The journal of physical chemistry. A.

[232]  A. Yaghjian Electric dyadic Green's functions in the source region , 1980 .

[233]  M. Stockman Nanoplasmonics: past, present, and glimpse into future. , 2011, Optics express.

[234]  Olivier J F Martin,et al.  Molecule-dependent plasmonic enhancement of fluorescence and Raman scattering near realistic nanostructures. , 2012, ACS nano.

[235]  John E. Sipe,et al.  Surface and bulk contributions to the second-order nonlinear optical response of a gold film , 2009 .

[236]  Michael Scalora,et al.  Role of antenna modes and field enhancement in second harmonic generation from dipole nanoantennas. , 2015, Optics express.

[237]  Aeneas Wiener,et al.  Nonlocal effects in the nanofocusing performance of plasmonic tips. , 2012, Nano letters.

[238]  Stephan W. Koch,et al.  Classical theory for second-harmonic generation from metallic nanoparticles. Phys Rev B 79:235109 , 2008, 0807.3575.

[239]  Steven G. Johnson,et al.  The failure of perfectly matched layers, and towards their redemption by adiabatic absorbers. , 2008, Optics express.

[240]  J. Butet,et al.  Interference between selected dipoles and octupoles in the optical second-harmonic generation from spherical gold nanoparticles. , 2010, Physical review letters.

[241]  Vijay K. Varadan,et al.  Scattering by three-dimensional anisotropic scatterers , 1989 .

[242]  Basab B. Dasgupta,et al.  Polarizability of a small sphere including nonlocal effects , 1981 .