Translating Structured English to Robot Controllers

Recently, Linear Temporal Logic (LTL) has been successfully applied to high-level task and motion planning problems for mobile robots. One of the main attributes of LTL is its close relationship with fragments of natural language. In this paper, we take the first steps toward building a natural language interface for LTL planning methods with mobile robots as the application domain. For this purpose, we built a structured English language which maps directly to a fragment of LTL.

[1]  Howie Choset,et al.  Composition of local potential functions for global robot control and navigation , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[2]  Hadas Kress-Gazit,et al.  Where's Waldo? Sensor-Based Temporal Logic Motion Planning , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[3]  Monica N. Nicolescu,et al.  Learning and interacting in human-robot domains , 2001, IEEE Trans. Syst. Man Cybern. Part A.

[4]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[5]  Henrik I. Christensen,et al.  Bringing Together Human and Robotic Environment Representations - A Pilot Study , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[6]  Amir Pnueli,et al.  Synthesis of Reactive(1) Designs , 2006, VMCAI.

[7]  Edmund M. Clarke,et al.  Model Checking , 1999, Handbook of Automated Reasoning.

[8]  Dieter Monjau,et al.  Workshop "Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen" , 2001, Informationstechnik Tech. Inform..

[9]  Howie Choset,et al.  Principles of Robot Motion: Theory, Algorithms, and Implementation ERRATA!!!! 1 , 2007 .

[10]  Wolfgang Müller,et al.  Structured English for Model Checking Specification , 2000, MBMV.

[11]  Stephen Pulman,et al.  Controlled Language for Knowledge Representation , 1996 .

[12]  Ewan Klein,et al.  A semantically-derived subset of English for hardware verification , 1999, ACL.

[13]  Deb Roy,et al.  Grounded Situation Models for Robots: Where words and percepts meet , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[14]  Calin Belta,et al.  Hierarchical abstractions for robotic swarms , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[15]  Deb Roy,et al.  Grounded Situation Models: Where Words and Percepts Meet , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[16]  Steven M. LaValle,et al.  Computing Smooth Feedback Plans Over Cylindrical Algebraic Decompositions , 2006, Robotics: Science and Systems.

[17]  C. Belta,et al.  Constructing decidable hybrid systems with velocity bounds , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[18]  Betty H. C. Cheng,et al.  Facilitating the construction of specification pattern-based properties , 2005, 13th IEEE International Conference on Requirements Engineering (RE'05).

[19]  George J. Pappas,et al.  Hybrid Controllers for Path Planning: A Temporal Logic Approach , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[20]  Guido Bugmann,et al.  Converting natural language route instructions into robot executable procedures , 2002, Proceedings. 11th IEEE International Workshop on Robot and Human Interactive Communication.

[21]  W. Smart,et al.  Programming Robots using High-Level Task Descriptions , 2004 .

[22]  Hadas Kress-Gazit,et al.  Temporal Logic Motion Planning for Mobile Robots , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[23]  Antoine Girard,et al.  Hierarchical Synthesis of Hybrid Controllers from Temporal Logic Specifications , 2007, HSCC.

[24]  Hadas Kress-Gazit,et al.  Valet parking without a valet , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[25]  David C. Conner,et al.  Towards Provable Navigation and Control of Nonholonomically Constrained Convex-Bodied Systems , 2006 .