Discontinuous Galerkin Approximation of Linear Parabolic Problems with Dynamic Boundary Conditions

In this paper we propose and analyze a Discontinuous Galerkin method for a linear parabolic problem with dynamic boundary conditions. We present the formulation and prove stability and optimal a priori error estimates for the fully discrete scheme. More precisely, using polynomials of degree $$p\ge 1$$p≥1 on meshes with granularity h along with a backward Euler time-stepping scheme with time-step $$\Delta t$$Δt, we prove that the fully-discrete solution is bounded by the data and it converges, in a suitable (mesh-dependent) energy norm, to the exact solution with optimal order $$h^p + \Delta t$$hp+Δt. The sharpness of the theoretical estimates are verified through several numerical experiments.

[1]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems. I.: a linear model problem , 1991 .

[2]  Pierre Jamet,et al.  Galerkin-type approximations which are discontinuous in time for parabolic equations in a variable domain , 1977 .

[3]  P. Sheng,et al.  A variational approach to moving contact line hydrodynamics , 2006, Journal of Fluid Mechanics.

[4]  Krishna Garikipati,et al.  A discontinuous Galerkin method for the Cahn-Hilliard equation , 2006, J. Comput. Phys..

[5]  Andreas Dedner,et al.  High Order Discontinuous Galerkin Methods for Elliptic Problems on Surfaces , 2015, SIAM J. Numer. Anal..

[6]  Dominik Schötzau,et al.  Time Discretization of Parabolic Problems by the HP-Version of the Discontinuous Galerkin Finite Element Method , 2000, SIAM J. Numer. Anal..

[7]  B. Rivière,et al.  A Discontinuous Galerkin Method Applied to Nonlinear Parabolic Equations , 2000 .

[8]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[9]  Morgan Pierre,et al.  A NUMERICAL ANALYSIS OF THE CAHN-HILLIARD EQUATION WITH DYNAMIC BOUNDARY CONDITIONS , 2010 .

[10]  Philipp Maass,et al.  Diverging time and length scales of spinodal decomposition modes in thin films , 1998 .

[11]  Stig Larsson,et al.  Numerical solution of parabolic integro-differential equations by the discontinuous Galerkin method , 1998, Math. Comput..

[12]  Dominik Schötzau,et al.  An hp a priori error analysis of¶the DG time-stepping method for initial value problems , 2000 .

[13]  Marco Antonio Fontelos,et al.  On a Phase-Field Model for Electrowetting and Other Electrokinetic Phenomena , 2011, SIAM J. Math. Anal..

[14]  J. V'azquez,et al.  Heat equation with dynamical boundary conditions of reactive–diffusive type , 2010, 1001.3642.

[15]  Andreas Dedner,et al.  Analysis of the discontinuous Galerkin method for elliptic problems on surfaces , 2012, IMA Journal of Numerical Analysis.

[16]  W. H. Reed,et al.  Triangular mesh methods for the neutron transport equation , 1973 .

[17]  Alain Miranville,et al.  Long time behavior of the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions , 2010 .

[18]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[19]  Philipp Maass,et al.  Novel Surface Modes in Spinodal Decomposition , 1997 .

[20]  Endre Süli,et al.  Discontinuous Galerkin Finite Element Approximation of the Cahn-Hilliard Equation with Convection , 2009, SIAM J. Numer. Anal..

[21]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems II: optimal error estimates in L ∞ L 2 and L ∞ L ∞ , 1995 .

[22]  Juan Luis Vázquez,et al.  On the Laplace equation with dynamical boundary conditions of reactive–diffusive type , 2009 .

[23]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[24]  Shawn W. Walker,et al.  A DIFFUSE INTERFACE MODEL FOR ELECTROWETTING WITH MOVING CONTACT LINES , 2011, 1112.5758.

[25]  Bernd Rinn,et al.  Phase separation in confined geometries: Solving the Cahn–Hilliard equation with generic boundary conditions , 2001 .

[26]  G. Dziuk Finite Elements for the Beltrami operator on arbitrary surfaces , 1988 .

[27]  S. C. Brenner,et al.  POINCAR´ E-FRIEDRICHS INEQUALITIES FOR PIECEWISE H 1 FUNCTIONS ∗ , 2003 .

[28]  Thomas Hintermann Evolution equations with dynamic boundary conditions , 1989, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[29]  Alfio Quarteroni,et al.  Well-Posedness, Regularity, and Convergence Analysis of the Finite Element Approximation of a Generalized Robin Boundary Value Problem , 2015, SIAM J. Numer. Anal..

[30]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[31]  Ilaria Perugia,et al.  An hp-Analysis of the Local Discontinuous Galerkin Method for Diffusion Problems , 2002, J. Sci. Comput..

[32]  P. Raviart,et al.  On a Finite Element Method for Solving the Neutron Transport Equation , 1974 .

[33]  Susanne C. Brenner,et al.  Poincaré-Friedrichs Inequalities for Piecewise H1 Functions , 2003, SIAM J. Numer. Anal..