Tracking Performance of MIMO Radar for Accelerating Targets

Multiple-input multiple-output (MIMO) radar utilizes orthogonal waveforms on each transmit element to achieve virtual aperture extension. Compared to a directed beam radar, MIMO radar has increased Doppler resolution due to the longer integration times required to maintain the same energy on target. However, the requirement for longer integration times can also cause target returns to be spread over multiple range-Doppler bins, which decreases probability of detection. This paper derives an analytical expression for probability of detection that explicitly accounts for range-Doppler migration. The effect of target velocity, target acceleration and integration time on range-Doppler migration is analyzed. A framework for velocity and acceleration compensation and step sizes for full and partial compensation are proposed. Single-target track completeness and track accuracy are compared for directed beam radar, MIMO radar with full compensation, MIMO radar with partial compensation, and uncompensated MIMO radar. Results indicate that compensation is required to prevent degraded probability of detection and track completeness as target velocity and acceleration increase. Full compensation mitigates the effects of range-Doppler migration but requires additional computational complexity. The use of partial compensation reduces computational complexity requirements but has diminished tracking performance due to coasting over missed measurements.

[1]  R. Keith Raney,et al.  Precision SAR processing using chirp scaling , 1994, IEEE Trans. Geosci. Remote. Sens..

[2]  R. Tharmarasa,et al.  Tracking multiple unresolved targets using MIMO radars , 2010, 2010 IEEE Aerospace Conference.

[3]  D. J. Rabideau,et al.  Ubiquitous MIMO multifunction digital array radar , 2003, The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003.

[4]  R. Tao,et al.  Analysing and compensating the effects of range and Doppler frequency migrations in linear frequency modulation pulse compression radar , 2011 .

[5]  Peter W. Moo Multiple-input multiple-output radar search strategies for high-velocity targets , 2011 .

[6]  Amit Kumar Mishra,et al.  Hybrid diversity strategy using MIMO radar for target tracking , 2009, 2009 Applied Electromagnetics Conference (AEMC).

[7]  D. Fuhrmann,et al.  Transmit beamforming for MIMO radar systems using signal cross-correlation , 2008, IEEE Transactions on Aerospace and Electronic Systems.

[8]  F.C. Robey,et al.  MIMO radar theory and experimental results , 2004, Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004..

[9]  Thayananthan Thayaparan,et al.  Strengths and limitations of the Fourier method for detecting accelerating targets by pulse Doppler radar , 2002 .

[10]  Daniel R. Fuhrmann,et al.  MIMO Radar Ambiguity Functions , 2006, IEEE Journal of Selected Topics in Signal Processing.

[11]  Xiang-Gen Xia,et al.  Discrete chirp-Fourier transform and its application to chirp rate estimation , 2000, IEEE Trans. Signal Process..

[12]  D. K. Barton,et al.  Radar system analysis and modeling , 2004, IEEE Aerospace and Electronic Systems Magazine.

[13]  Thia Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation: Theory, Algorithms and Software , 2001 .

[14]  D. J. Rabideau,et al.  Multiple-input multiple-output radar aperture optimisation , 2011 .

[15]  Fulvio Gini,et al.  Waveform design and diversity for advanced radar systems , 2012 .

[16]  William L. Melvin,et al.  Principles of Modern Radar: Advanced techniques , 2012 .

[17]  Daiyin Zhu,et al.  A Keystone Transform Without Interpolation for SAR Ground Moving-Target Imaging , 2007, IEEE Geoscience and Remote Sensing Letters.

[18]  Yaakov Bar-Shalom,et al.  Multitarget-multisensor tracking: Advanced applications , 1989 .

[19]  Y. Bar-Shalom,et al.  Topography-based VS-IMM estimator for large-scale ground target tracking , 1999 .

[20]  J. Tabrikian,et al.  Target Detection and Localization Using MIMO Radars and Sonars , 2006, IEEE Transactions on Signal Processing.

[21]  S. Rice Mathematical analysis of random noise , 1944 .

[22]  P. P. Vaidyanathan,et al.  MIMO Radar Ambiguity Properties and Optimization Using Frequency-Hopping Waveforms , 2008, IEEE Transactions on Signal Processing.

[23]  Y. Bar-Shalom,et al.  The interacting multiple model algorithm for systems with Markovian switching coefficients , 1988 .

[24]  Peter Swerling,et al.  Probability of detection for fluctuating targets , 1960, IRE Trans. Inf. Theory.

[25]  D. Rabideau Non-adaptive multiple-input, multiple-output radar techniques for reducing clutter , 2009 .

[26]  Luís B. Almeida,et al.  The fractional Fourier transform and time-frequency representations , 1994, IEEE Trans. Signal Process..

[27]  Daniel W. Bliss,et al.  Analyzing the impact of MIMO radar on tracking association error , 2012, 2012 IEEE 7th Sensor Array and Multichannel Signal Processing Workshop (SAM).