Efficient signal processing for time-resolved fluorescence detection of nitrogen-vacancy spins in diamond

Room-temperature fluorescence detection of the nitrogen-vacancy center electronic spin typically has low signal to noise, requiring long experiments to reveal an averaged signal. Here, we present a simple approach to analysis of time-resolved fluorescence data that permits an improvement in measurement precision through signal processing alone. Applying our technique to experimental data reveals an improvement in signal to noise, which is equivalent to a 14% increase in photon collection efficiency. We further explore the dependence of the signal-to-noise ratio on excitation power and analyze our results using a rate equation model. Our results provide a rubric for optimizing fluorescence spin detection, which has direct implications for improving precision of nitrogen-vacancy-based sensors.

[1]  D. Awschalom,et al.  Excited-state spin coherence of a single nitrogen–vacancy centre in diamond , 2010 .

[2]  J. S. Hodges,et al.  Repetitive Readout of a Single Electronic Spin via Quantum Logic with Nuclear Spin Ancillae , 2009, Science.

[3]  K. Perez Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment , 2014 .

[4]  M W Doherty,et al.  Phonon-induced population dynamics and intersystem crossing in nitrogen-vacancy centers. , 2014, Physical review letters.

[5]  Lukin,et al.  Magnetic field imaging with nitrogen-vacancy ensembles , 2011, 1207.3339.

[6]  L. Schweikhard,et al.  A new Pulse-Pattern Generator based on LabVIEW FPGA , 2012 .

[7]  W. Marsden I and J , 2012 .

[8]  Hannes Bernien,et al.  Spin dynamics in the optical cycle of single nitrogen-vacancy centres in diamond , 2010, 1010.1192.

[9]  M. D. Lukin,et al.  Optical magnetic imaging of living cells , 2013, Nature.

[10]  B. Hensen,et al.  High-fidelity projective read-out of a solid-state spin quantum register , 2011, Nature.

[11]  G. Guo,et al.  Subdiffraction optical manipulation of the charge state of nitrogen vacancy center in diamond , 2015, Light: Science & Applications.

[12]  J Wrachtrup,et al.  Magnetic spin imaging under ambient conditions with sub-cellular resolution. , 2013, Nature communications.

[13]  D. D. Awschalom,et al.  Decoherence-protected quantum gates for a hybrid solid-state spin register , 2012, Nature.

[14]  J. Rarity,et al.  Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses , 2010, 1006.2093.

[15]  Matthias Steiner,et al.  Single-Shot Readout of a Single Nuclear Spin , 2010, Science.

[16]  Andris Ozols,et al.  Advanced Optical Materials and Devices (AOMD-6) , 2016 .

[17]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[18]  F. Dolde,et al.  High sensitivity magnetic imaging using an array of spins in diamond. , 2010, The Review of scientific instruments.

[19]  M. Lukin,et al.  Efficient readout of a single spin state in diamond via spin-to-charge conversion. , 2014, Physical review letters.

[20]  J. Tetienne,et al.  Magnetometry with nitrogen-vacancy defects in diamond , 2013, Reports on progress in physics. Physical Society.

[21]  J. Wrachtrup,et al.  Universal enhancement of the optical readout fidelity of single electron spins at nitrogen-vacancy c , 2009, 0909.2783.

[22]  Neil B. Manson,et al.  The nitrogen-vacancy colour centre in diamond , 2013, 1302.3288.

[23]  Harald Giessen,et al.  Diamond nanophotonics , 2012, Beilstein journal of nanotechnology.

[24]  Ronald L. Walsworth,et al.  Atom-like crystal defects: From quantum computers to biological sensors , 2014 .

[25]  F. Jelezko,et al.  Dark states of single nitrogen-vacancy centers in diamond unraveled by single shot NMR. , 2010, Physical review letters.

[26]  N. Yao,et al.  State-selective intersystem crossing in nitrogen-vacancy centers , 2014, 1412.4865.