A design of Zr-rich body-centered cubic structured refractory complex concentrated alloy with outstanding tensile strength and ductility

[1]  Zhengwang Zhu,et al.  Phase Decomposition and Elevated Temperature Mechanical Properties of Zr–Ti–Nb–Ta–Sn Complex Concentrated Alloy Annealed at Intermediate Temperatures , 2022, Metallurgical and Materials Transactions A.

[2]  Zhengwang Zhu,et al.  Microstructure and mechanical properties of lightweight Ti3Zr1.5NbVAl (x=0, 0.25, 0.5 and 0.75) refractory complex concentrated alloys , 2022, Journal of Materials Science & Technology.

[3]  W. Li,et al.  Design of TiZrNbTa multi-principal element alloys with outstanding mechanical properties and wear resistance , 2022, Materials Science and Engineering: A.

[4]  Xin Tong,et al.  Design of BCC refractory multi-principal element alloys with superior mechanical properties , 2022, Materials Research Letters.

[5]  P. Liaw,et al.  Ultrastrong and ductile BCC high-entropy alloys with low-density via dislocation regulation and nanoprecipitates , 2021, Journal of Materials Science & Technology.

[6]  D. Fabijanic,et al.  Microstructure, tensile properties and deformation behaviour of a promising bio-applicable new Ti35Zr15Nb25Ta25 medium entropy alloy (MEA) , 2021 .

[7]  D. Klimenko,et al.  Plastic deformation of solid-solution strengthened Hf-Nb-Ta-Ti-Zr body-centered cubic medium/high-entropy alloys , 2021, Scripta Materialia.

[8]  Yuan Wu,et al.  Local chemical fluctuation mediated ductility in body-centered-cubic high-entropy alloys , 2021 .

[9]  Lu Wang,et al.  Lightweight Zr1.2V0.8NbTi Al high-entropy alloys with high tensile strength and ductility , 2021 .

[10]  H. Yasuda,et al.  Deformation behavior of HfNbTaTiZr high entropy alloy singe crystals and polycrystals , 2021 .

[11]  B. Liu,et al.  Phase decomposition behavior and its effects on mechanical properties of TiNbTa0.5ZrAl0.5 refractory high entropy alloy , 2021 .

[12]  S. Bai,et al.  Effect of the valence electron concentration on the yield strength of Ti–Zr–Nb–V high-entropy alloys , 2021, Journal of Alloys and Compounds.

[13]  Xingwang Cheng,et al.  Effects of vanadium concentration on mechanical properties of V NbMoTa refractory high-entropy alloys , 2021 .

[14]  M. Qian,et al.  Cuboid-like nanostructure strengthened equiatomic Ti–Zr–Nb–Ta medium entropy alloy , 2020 .

[15]  Shyi-Kaan Wu,et al.  A study on severely cold-rolled and intermediate temperature aged HfNbTiZr refractory high-entropy alloy , 2020 .

[16]  S. Hong,et al.  Superior mechanical properties and strengthening mechanisms of lightweight AlxCrNbVMo refractory high-entropy alloys (x = 0, 0.5, 1.0) fabricated by the powder metallurgy process , 2020 .

[17]  C. Yiwen,et al.  A single-phase V0.5Nb0.5ZrTi refractory high-entropy alloy with outstanding tensile properties , 2020 .

[18]  Gang Wang,et al.  Microstructure and Mechanical Properties of Nb–Ti–V–Zr Refractory Medium-Entropy Alloys , 2020, Frontiers in Materials.

[19]  W. Mao,et al.  Phase Stabilities of High Entropy Alloys , 2020, Scripta Materialia.

[20]  L. Fu,et al.  Phase Engineering of High‐Entropy Alloys , 2020, Advanced materials.

[21]  S. Gorsse,et al.  High temperature strength of refractory complex concentrated alloys , 2019, Acta Materialia.

[22]  Dierk Raabe,et al.  High-entropy alloys , 2019, Nature Reviews Materials.

[23]  K. An,et al.  Formation, structure and properties of biocompatible TiZrHfNbTa high-entropy alloys , 2019, Materials Research Letters.

[24]  J. Zou,et al.  Compositional design of strong and ductile (tensile) Ti-Zr-Nb-Ta medium entropy alloys (MEAs) using the atomic mismatch approach , 2019, Materials Science and Engineering: A.

[25]  P. Haušild,et al.  Strength enhancement of high entropy alloy HfNbTaTiZr by severe plastic deformation , 2018, Journal of Alloys and Compounds.

[26]  Qian Xiao,et al.  High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys , 2018, Nature Communications.

[27]  S. Semiatin,et al.  Effect of Cold Deformation and Annealing on the Microstructure and Tensile Properties of a HfNbTaTiZr Refractory High Entropy Alloy , 2018, Metallurgical and Materials Transactions A.

[28]  Jian Xu,et al.  (TiZrNbTa)-Mo high-entropy alloys: Dependence of microstructure and mechanical properties on Mo concentration and modeling of solid solution strengthening , 2018 .

[29]  Yang Shao,et al.  Microstructures and mechanical properties of TixNbMoTaW refractory high-entropy alloys , 2018 .

[30]  P. Hodgson,et al.  Understanding the mechanical behaviour and the large strength/ductility differences between FCC and BCC AlxCoCrFeNi high entropy alloys , 2017 .

[31]  Ke An,et al.  Phase‐Transformation Ductilization of Brittle High‐Entropy Alloys via Metastability Engineering , 2017, Advanced materials.

[32]  J. Qiao,et al.  Mechanical properties of refractory high-entropy alloys: Experiments and modeling , 2017 .

[33]  William A. Curtin,et al.  Atomistic simulations of dislocations in a model BCC multicomponent concentrated solid solution alloy , 2016 .

[34]  Wenqian Wu,et al.  Effects of cold rolling and subsequent annealing on the microstructure of a HfNbTaTiZr high-entropy alloy , 2016 .

[35]  Yanfei Gao,et al.  Thermal activation mechanisms and Labusch-type strengthening analysis for a family of high-entropy and equiatomic solid-solution alloys , 2016 .

[36]  Yong Zhang,et al.  NbTaV-(Ti,W) refractory high-entropy alloys: Experiments and modeling , 2016 .

[37]  C. Tasan,et al.  On the mechanism of {332} twinning in metastable β titanium alloys , 2016 .

[38]  Oleg N. Senkov,et al.  Microstructure and properties of a refractory high-entropy alloy after cold working , 2015 .

[39]  Walter Steurer,et al.  Structural-disorder and its effect on the mechanical properties in single-phase TaNbHfZr high-entropy alloys , 2015, 1510.09047.

[40]  Jingjie Guo,et al.  Microstructure and mechanical properties of refractory MoNbHfZrTi high-entropy alloy , 2015 .

[41]  P. Rivera-Díaz-del-Castillo,et al.  Modelling solid solution hardening in high entropy alloys , 2015 .

[42]  Rajiv S. Mishra,et al.  Effect of Microstructure on the Deformation Mechanism of Friction Stir-Processed Al0.1CoCrFeNi High Entropy Alloy , 2015 .

[43]  Tao Wang,et al.  A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties , 2014 .

[44]  J. Yeh,et al.  High-Entropy Alloys: A Critical Review , 2014 .

[45]  K. Dahmen,et al.  Microstructures and properties of high-entropy alloys , 2014 .

[46]  Jien-Wei Yeh,et al.  Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy , 2014 .

[47]  Jien-Wei Yeh,et al.  Alloy Design Strategies and Future Trends in High-Entropy Alloys , 2013 .

[48]  C. Weinberger,et al.  Peierls potential of screw dislocations in bcc transition metals: Predictions from density functional theory , 2013 .

[49]  P. Castany,et al.  Twinning system selection in a metastable β-titanium alloy by Schmid factor analysis , 2011 .

[50]  C. Woodward,et al.  Microstructure and Room Temperature Properties of a High-Entropy TaNbHfZrTi Alloy (Postprint) , 2011 .

[51]  D. Miracle,et al.  Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys , 2011 .

[52]  P. Liaw,et al.  Refractory high-entropy alloys , 2010 .