Hybrid Solar Cells from Regioregular Polythiophene and ZnO Nanoparticles

Blends of nanocrystalline zinc oxide nanoparticles (nc-ZnO) and regioregular poly(3-hexylthiophene) (P3HT) processed from solution have been used to construct hybrid polymer–metal oxide bulk-heterojunction solar cells. Thermal annealing of the spin-cast films significantly improves the solar-energy conversion efficiency of these hybrid solar cells to ∼ 0.9 %. Photoluminescence and photoinduced absorption spectroscopy demonstrate that charge-carrier generation is not quantitative, because a fraction of P3HT appears not to be in contact with or in close proximity to ZnO. The coarse morphology of the films, also identified by tapping-mode atomic force microscopy, likely limits the device performance.

[1]  Donal D. C. Bradley,et al.  The Effect of Polymer Optoelectronic Properties on the Performance of Multilayer Hybrid Polymer/TiO2 Solar Cells , 2005 .

[2]  A Paul Alivisatos,et al.  Employing end-functional polythiophene to control the morphology of nanocrystal-polymer composites in hybrid solar cells. , 2004, Journal of the American Chemical Society.

[3]  Peng,et al.  Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. , 1996, Physical review. B, Condensed matter.

[4]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[5]  Andries Meijerink,et al.  The Kinetics of the Radiative and Nonradiative Processes in Nanocrystalline ZnO Particles upon Photoexcitation , 2000 .

[6]  Donal D. C. Bradley,et al.  Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene , 2005 .

[7]  Giovanni Ridolfi,et al.  The Effect of a Mild Thermal Treatment on the Performance of Poly(3‐alkylthiophene)/Fullerene Solar Cells , 2002 .

[8]  Tymish Y. Ohulchanskyy,et al.  Efficient photoconductive devices at infrared wavelengths using quantum dot-polymer nanocomposites , 2005 .

[9]  P. C. Chui,et al.  Titania bicontinuous network structures for solar cell applications , 2005 .

[10]  C. Brabec,et al.  2.5% efficient organic plastic solar cells , 2001 .

[11]  W. J. Beek,et al.  Efficient Hybrid Solar Cells from Zinc Oxide Nanoparticles and a Conjugated Polymer , 2004 .

[12]  Christoph J. Brabec,et al.  Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors , 2002 .

[13]  U. Schubert,et al.  Photovoltaic properties of a conjugated polymer blend of MDMO-PPV and PCNEPV , 2004 .

[14]  R. Thomann,et al.  Semicrystalline morphology in thin films of poly(3-hexylthiophene) , 2004 .

[15]  Zhenan Bao,et al.  Soluble and processable regioregular poly(3‐hexylthiophene) for thin film field‐effect transistor applications with high mobility , 1996 .

[16]  Andreas Kornowski,et al.  Self-assembly of ZnO: from nanodots to nanorods. , 2002, Angewandte Chemie.

[17]  C. A. Walsh,et al.  Efficient photodiodes from interpenetrating polymer networks , 1995, Nature.

[18]  E. W. Meijer,et al.  Two-dimensional charge transport in self-organized, high-mobility conjugated polymers , 1999, Nature.

[19]  Marija Drndic,et al.  Efficient polymer-nanocrystal quantum-dot photodetectors , 2005 .

[20]  Lead sulfide nanocrystal: conducting polymer solar cells , 2004, cond-mat/0408022.

[21]  A. Heeger,et al.  Infiltration of Regioregular Poly[2,2′‐(3‐hexylthiopene)] into Random Nanocrystalline TiO2 Networks , 2005 .

[22]  M. A. Malik,et al.  Morphology effects in nanocrystalline CuInSe2-conjugated polymer hybrid systems , 2004 .

[23]  P. C. Chui,et al.  Influence of solvent on film morphology and device performance of poly(3-hexylthiophene):TiO2 nanocomposite solar cells , 2004 .

[24]  N. Greenham,et al.  Photovoltaic Devices Using Blends of Branched CdSe Nanoparticles and Conjugated Polymers , 2003 .

[25]  A. Alivisatos,et al.  Hybrid Nanorod-Polymer Solar Cells , 2002, Science.

[26]  M. Shim,et al.  Organic-capped ZnO nanocrystals: synthesis and n-type character. , 2001, Journal of the American Chemical Society.

[27]  Paul A. van Hal,et al.  Efficient methano[70]fullerene/MDMO-PPV bulk heterojunction photovoltaic cells. , 2003, Angewandte Chemie.

[28]  P. Carcia,et al.  Oxide engineering of ZnO thin‐film transistors for flexible electronics , 2005 .

[29]  Donal D. C. Bradley,et al.  Efficient charge collection in hybrid polymer/TiO2 solar cells using poly(ethylenedioxythiophene)/polystyrene sulphonate as hole collector , 2005 .

[30]  G. Konstantatos,et al.  Solution-processed PbS quantum dot infrared photodetectors and photovoltaics , 2005, Nature materials.

[31]  Niyazi Serdar Sariciftci,et al.  Effects of Postproduction Treatment on Plastic Solar Cells , 2003 .

[32]  Yunzhi Liu,et al.  Infiltrating Semiconducting Polymers into Self‐Assembled Mesoporous Titania Films for Photovoltaic Applications , 2003 .

[33]  Dieter Meissner,et al.  Hybrid Solar Cells Based on Nanoparticles of CuInS2 in Organic Matrices , 2003 .

[34]  Xiaoniu Yang,et al.  Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells. , 2005, The journal of physical chemistry. B.

[35]  Michael D. McGehee,et al.  Photovoltaic cells made from conjugated polymers infiltrated into mesoporous titania , 2003 .

[36]  A. Alivisatos,et al.  Controlling the Morphology of Nanocrystal–Polymer Composites for Solar Cells , 2003 .

[37]  Paul A. van Hal,et al.  Photoinduced electron transfer from conjugated polymers to TiO2 , 1999 .