The Safe Lambda Calculus
暂无分享,去创建一个
[1] Géraud Sénizergues,et al. L(A) = L(B) ? decidability results from complete formal systems , 2001 .
[2] Dan R. Ghica,et al. Reasoning about Idealized ALGOL Using Regular Languages , 2000, ICALP.
[3] Klaus Aehlig,et al. Safety Is not a Restriction at Level 2 for String Languages , 2005, FoSSaCS.
[4] C.-H. Luke Ong,et al. On Full Abstraction for PCF: I, II, and III , 2000, Inf. Comput..
[5] Ralph Loader. Notes on Simply Typed Lambda Calculus , 1998 .
[6] John Lamping. An algorithm for optimal lambda calculus reduction , 1989, POPL '90.
[7] Pawel Urzyczyn,et al. Higher-Order Pushdown Trees Are Easy , 2002, FoSSaCS.
[8] Pierre-Louis Curien,et al. Sequential Algorithms on Concrete Data Structures , 1982, Theor. Comput. Sci..
[9] Radha Jagadeesan,et al. Full Abstraction for PCF , 2000, Inf. Comput..
[10] Radha Jagadeesan,et al. Full Abstraction for PCF , 1994, Inf. Comput..
[11] C.-H. Luke Ong. An approach to deciding the observational equivalence of Algol-like languages , 2004, Ann. Pure Appl. Log..
[12] Guy McCusker. Games and Full Abstraction for a Functional Metalanguage with Recursive Types , 1998, Distinguished Dissertations.
[13] Helmut Schwichtenberg,et al. Definierbare Funktionen imλ-Kalkül mit Typen , 1975, Archive for Mathematical Logic.
[14] Marek Zaionc,et al. Word Operation Definable in the Typed lambda-Calculus , 1987, Theor. Comput. Sci..
[15] Daniel Leivant,et al. Functions Over Free Algebras Definable in the Simply Typed lambda Calculus , 1993, Theor. Comput. Sci..
[16] H. Schwichtenberg,et al. Definierbare Funktionen im Lambda-Kalkül mit Typen , 1976 .
[17] Dan R. Ghica,et al. Data-Abstraction Refinement: A Game Semantic Approach , 2005, SAS.
[18] Marek Zaionc. On the "lambda"-definable tree operations , 1988, Algebraic Logic and Universal Algebra in Computer Science.
[19] William W. Tait,et al. Intensional interpretations of functionals of finite type I , 1967, Journal of Symbolic Logic.
[20] Marek Zaionc,et al. lambda-Definability on Free Algebras , 1991, Ann. Pure Appl. Log..
[21] C.-H. Luke Ong,et al. On Model-Checking Trees Generated by Higher-Order Recursion Schemes , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).
[22] Andreas Blass,et al. A Game Semantics for Linear Logic , 1992, Ann. Pure Appl. Log..
[23] Richard Statman,et al. Intuitionistic Propositional Logic is Polynomial-Space Complete , 1979, Theor. Comput. Sci..
[24] John C. Reynolds,et al. The essence of ALGOL , 1997 .
[25] Didier Caucal. On Infinite Terms Having a Decidable Monadic Theory , 2002, MFCS.
[26] Harry G. Mairson,et al. Database Query Languages Embedded in the Typed Lambda Calculus , 1996, Inf. Comput..
[27] Daniel Leivant,et al. Lambda Calculus Characterizations of Poly-Time , 1993, Fundam. Informaticae.
[28] Alfred V. Aho,et al. Indexed Grammars—An Extension of Context-Free Grammars , 1967, SWAT.
[29] Andrzej S. Murawski,et al. Third-Order Idealized Algol with Iteration Is Decidable , 2005, FoSSaCS.
[30] Hanno Nickau. Hereditarily Sequential Functionals , 1994, LFCS.
[31] Werner Damm,et al. An Automata-Theoretical Characterization of the OI-Hierarchy , 1986, Inf. Control..
[32] Richard Statman,et al. The Typed lambda-Calculus is not Elementary Recursive , 1979, Theor. Comput. Sci..
[33] Daniel Leivant,et al. The Expressiveness of Simple and Second-Order Type Structures , 1983, JACM.
[34] Harry G. Mairson. A Simple Proof of a Theorem of Statman , 1992, Theor. Comput. Sci..
[35] Aleksy Schubert. The Complexity of beta-Reduction in Low Orders , 2001, TLCA.
[36] Marvin Minsky,et al. Computation : finite and infinite machines , 2016 .
[37] Andrzej S. Murawski. On program equivalence in languages with ground-type references , 2003, 18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings..
[38] Werner Damm,et al. The IO- and OI-Hierarchies , 1982, Theor. Comput. Sci..
[39] Marek Zaionc,et al. Lambda Representation of Operations Between Fifferent Term Algebras , 1994, CSL.
[40] Naoki Kobayashi. Types and higher-order recursion schemes for verification of higher-order programs , 2009, POPL '09.