A Bayesian approach to the evolution of perceptual and cognitive systems

We describe a formal framework for analyzing how statistical properties of natural environments and the process of natural selection interact to determine the design of perceptual and cognitive systems. The framework consists of two parts: a Bayesian ideal observer with a utility function appropriate for natural selection, and a Bayesian formulation of Darwin's theory of natural selection. Simulations of Bayesian natural selection were found to yield new insights, for example, into the co-evolution of camouflage, color vision, and decision criteria. The Bayesian framework captures and generalizes, in a formal way, many of the important ideas of other approaches to perception and cognition.

[1]  R. Lewontin The Genetic Basis of Evolutionary Change , 1974 .

[2]  J. Mollon,et al.  Fruits, foliage and the evolution of primate colour vision. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[3]  Jeffrey S. Perry,et al.  Edge co-occurrence in natural images predicts contour grouping performance , 2001, Vision Research.

[4]  W. Geisler,et al.  Bayesian natural selection and the evolution of perceptual systems. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[5]  R M Shiffrin,et al.  Perception and preference in short-term word priming. , 2001, Psychological review.

[6]  F. Rafferty Evolutionary psychology. , 1999, Journal of the American Academy of Child and Adolescent Psychiatry.

[7]  E. Brunswik,et al.  Ecological cue-validity of proximity and of other Gestalt factors. , 1953, The American journal of psychology.

[8]  C. Gilbert,et al.  On a common circle: natural scenes and Gestalt rules. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[9]  J. Fadiman Illusions , 1999 .

[10]  H. Barlow Vision: A computational investigation into the human representation and processing of visual information: David Marr. San Francisco: W. H. Freeman, 1982. pp. xvi + 397 , 1983 .

[11]  G. Legge,et al.  Mr. Chips: an ideal-observer model of reading. , 1997, Psychological review.

[12]  Preeti Verghese,et al.  The psychophysics of visual search , 2000, Vision Research.

[13]  R. Shiffrin,et al.  A model for recognition memory: REM—retrieving effectively from memory , 1997, Psychonomic bulletin & review.

[14]  L. Maloney Evaluation of linear models of surface spectral reflectance with small numbers of parameters. , 1986, Journal of the Optical Society of America. A, Optics and image science.

[15]  D. Kersten,et al.  Illusions, perception and Bayes , 2002, Nature Neuroscience.

[16]  George C. Williams,et al.  Adaptation and Natural Selection , 2018 .

[17]  D. Hartl,et al.  Principles of population genetics , 1981 .

[18]  W. Geisler Sequential ideal-observer analysis of visual discriminations. , 1989, Psychological review.

[19]  J. Lythgoe,et al.  Visual pigments and the acquisition of visual information. , 1989, The Journal of experimental biology.

[20]  William T. Freeman,et al.  The generic viewpoint assumption in a framework for visual perception , 1994, Nature.

[21]  Miguel P Eckstein,et al.  The footprints of visual attention in the Posner cueing paradigm revealed by classification images. , 2002, Journal of vision.

[22]  Bruce L. McNaughton,et al.  Making room for new memories , 2002, Nature Neuroscience.

[23]  D H Brainard,et al.  Bayesian color constancy. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[24]  L. Cosmides,et al.  Cognitive adaptations for social exchange. , 1992 .

[25]  E. Brunswik Perception and the Representative Design of Psychological Experiments , 1957 .

[26]  John E. R. Staddon,et al.  Optima for animals , 1982 .

[27]  L. Maloney,et al.  Color constancy: a method for recovering surface spectral reflectance. , 1986, Journal of the Optical Society of America. A, Optics and image science.

[28]  J. M. Smith,et al.  Optimality theory in evolutionary biology , 1990, Nature.

[29]  Sandy Lovie How the mind works , 1980, Nature.

[30]  Jacob Feldman,et al.  Minimization of Boolean complexity in human concept learning , 2000, Nature.

[31]  D. B. Judd,et al.  Spectral Distribution of Typical Daylight as a Function of Correlated Color Temperature , 1964 .

[32]  John R. Anderson The Adaptive Character of Thought , 1990 .

[33]  D Purves,et al.  The distribution of oriented contours in the real world. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Jeffrey A. Sloan,et al.  Spatial frequency analysis of the visual environment: Anisotropy and the carpentered environment hypothesis , 1978, Vision Research.

[35]  B. Dosher,et al.  Mechanisms of perceptual attention in precuing of location , 2000, Vision Research.

[36]  J. Swets,et al.  A decision-making theory of visual detection. , 1954, Psychological review.

[37]  G. Miller,et al.  Cognitive science. , 1981, Science.

[38]  F. Attneave Some informational aspects of visual perception. , 1954, Psychological review.

[39]  J. M. Smith,et al.  The Logic of Animal Conflict , 1973, Nature.

[40]  E. Reed The Ecological Approach to Visual Perception , 1989 .

[41]  A. Yuille,et al.  Bayesian decision theory and psychophysics , 1996 .

[42]  Thomas W. Cronin,et al.  Spectral tuning of dichromats to natural scenes , 2000, Vision Research.

[43]  D. Purves,et al.  Why we see what we do , 2003 .

[44]  L. Cosmides,et al.  The Adapted Mind , 1992 .

[45]  J. Gibson The Ecological Approach to Visual Perception , 1979 .

[46]  Hermann von Helmholtz,et al.  Treatise on Physiological Optics , 1962 .

[47]  D J Field,et al.  Relations between the statistics of natural images and the response properties of cortical cells. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[48]  M. Vorobyev,et al.  Colour vision as an adaptation to frugivory in primates , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[49]  R. Sokal Evolutionary Genetics , 1972, The Quarterly Review of Biology.

[50]  D. M. Green,et al.  Signal detection theory and psychophysics , 1966 .

[51]  G. J. Burton,et al.  Color and spatial structure in natural scenes. , 1987, Applied optics.

[52]  Hagai Attias,et al.  Temporal Low-Order Statistics of Natural Sounds , 1996, NIPS.

[53]  D. Buss,et al.  On the Evolution of desire. , 1994 .

[54]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[55]  Zili Liu,et al.  2D observers for human 3D object recognition? , 1997, Vision Research.

[56]  E. R. Dixon Spectral distribution of Australian daylight , 1978 .

[57]  W. W. Peterson,et al.  The theory of signal detectability , 1954, Trans. IRE Prof. Group Inf. Theory.

[58]  David C. Knill,et al.  Introduction: a Bayesian formulation of visual perception , 1996 .

[59]  Christopher G. Langton Artificial life : the proceedings of an Interdisciplinary Workshop on the Synthesis and Simulation of Living Systems held September, 1987, in Los Alamos, New Mexico , 1989 .

[60]  David Mumford,et al.  Statistics of range images , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[61]  William T. Freeman,et al.  Correctness of Belief Propagation in Gaussian Graphical Models of Arbitrary Topology , 1999, Neural Computation.