Piecewise Linear Multicriteria Programs: The Continuous Case and Its Discontinuous Generalization

In this paper we study piecewise linear multicriteria programs, that is, multicriteria programs with either a continuous or discontinuous piecewise linear objective function and a polyhedron set constraint. We obtain an algebraic representation of a semi-closed polyhedron and apply it to show that the image of a semi-closed polyhedron under a continuous linear function is always one semi-closed polyhedron. We establish that the (weak) Pareto solution/point set of a piecewise linear multicriteria program is the union of finitely many semi-closed polyhedra. We propose an algorithm for finding the Pareto point set of a continuous piecewise linear bi-criteria program and generalize it to the discontinuous case. We apply our algorithm to solve the discontinuous bi-criteria portfolio selection problem with an l∞ risk measure and transaction costs and show that this algorithm can be improved by using an ideal point strategy.

[1]  Philippe Vincke,et al.  Multicriteria Decision-Aid , 1992 .

[2]  S. Vajda,et al.  Contribution to the Theory of Games , 1951 .

[3]  K. Holmberg,et al.  A Lagrangean heuristic for the facility location problem with staircase costs , 1997 .

[4]  Robert Fourer,et al.  A simplex algorithm for piecewise-linear programming II: Finiteness, feasibility and degeneracy , 1988, Math. Program..

[5]  Ignacio E. Grossmann,et al.  Disjunctive Programming Techniques for the Optimization of Process Systems with Discontinuous Investment Costs−Multiple Size Regions , 1996 .

[6]  Faruk Güder,et al.  A Dual Simplex Algorithm for Piecewise-Linear Programming , 1996 .

[7]  D. Blackwell,et al.  5. Admissible Points of Convex Sets , 1953 .

[8]  Oktay Günlük,et al.  Capacitated Network Design - Polyhedral Structure and Computation , 1996, INFORMS J. Comput..

[9]  Thomas L. Magnanti,et al.  Variable Disaggregation in Network Flow Problems with Piecewise Linear Costs , 2007, Oper. Res..

[10]  Y. Aneja,et al.  BICRITERIA TRANSPORTATION PROBLEM , 1979 .

[11]  Xiaoqi Yang,et al.  Weak sharp minima for piecewise linear multiobjective optimization in normed spaces , 2008 .

[12]  Robert Fourer,et al.  A simplex algorithm for piecewise-linear programming I: Derivation and proof , 1985, Math. Program..

[13]  Y. Narahari,et al.  Nonconvex piecewise linear knapsack problems , 2009, Eur. J. Oper. Res..

[14]  Xiaoqi Yang,et al.  The structure of weak Pareto solution sets in piecewise linear multiobjective optimization in normed spaces , 2008 .

[15]  Oktay Günlük,et al.  A branch-and-cut algorithm for capacitated network design problems , 1999, Math. Program..

[16]  Kok Lay Teo,et al.  Portfolio Optimization Under a Minimax Rule , 2000 .

[17]  Panos M. Pardalos,et al.  Adaptive dynamic cost updating procedure for solving fixed charge network flow problems , 2008, Comput. Optim. Appl..

[18]  George L. Nemhauser,et al.  Nonconvex, lower semicontinuous piecewise linear optimization , 2008, Discret. Optim..

[19]  P. Pardalos,et al.  Pareto optimality, game theory and equilibria , 2008 .

[20]  Matthias Ehrgott,et al.  Multicriteria Optimization , 2005 .

[21]  X. Q. Yang,et al.  Structure and Weak Sharp Minimum of the Pareto Solution Set for Piecewise Linear Multiobjective Optimization , 2010, J. Optim. Theory Appl..

[22]  K. Holmberg Solving the staircase cost facility location problem with decomposition and piecewise linearization , 1994 .

[23]  Matthias Ehrgott,et al.  Multicriteria Optimization (2. ed.) , 2005 .

[24]  Kok Lay Teo,et al.  Minimax portfolio optimization: empirical numerical study , 2004, J. Oper. Res. Soc..

[25]  Panos M. Pardalos,et al.  A survey of recent developments in multiobjective optimization , 2007, Ann. Oper. Res..

[26]  R.M.J. Heuts,et al.  An (s,q) inventory model with stochastic and interrelated lead times , 1995 .

[27]  W. Sharpe,et al.  Mean-Variance Analysis in Portfolio Choice and Capital Markets , 1987 .

[28]  Cesar Beltran-Royo,et al.  A conjugate Rosen's gradient projection method with global line search for piecewise linear concave optimization , 2007, Eur. J. Oper. Res..

[29]  Franco Giannessi,et al.  Theorems of the alternative for multifunctions with applications to optimization: General results , 1987 .

[30]  Panos M. Pardalos,et al.  Dynamic slope scaling and trust interval techniques for solving concave piecewise linear network flow problems , 2000, Networks.

[31]  Robert Fourer,et al.  A simplex algorithm for piecewise-linear programming III: Computational analysis and applications , 1992, Math. Program..

[32]  Stefan Nickel,et al.  Multiple objective programming with piecewise linear functions , 1999 .

[33]  P. Yu Multiple-Criteria Decision Making: "Concepts, Techniques, And Extensions" , 2012 .

[34]  F. Giannessi Theorems of the alternative and optimality conditions , 1984 .

[35]  Panos M. Pardalos,et al.  Bilinear modeling solution approach for fixed charge network flow problems , 2009, Optim. Lett..

[36]  R. Wets Solving stochastic programs with simple recourse , 1983 .

[37]  Sven Leyffer,et al.  A Complementarity Constraint Formulation of Convex Multiobjective Optimization Problems , 2009, INFORMS J. Comput..

[38]  Thomas L. Magnanti,et al.  A Comparison of Mixed - Integer Programming Models for Nonconvex Piecewise Linear Cost Minimization Problems , 2003, Manag. Sci..

[39]  P. Yu,et al.  The set of all nondominated solutions in linear cases and a multicriteria simplex method , 1975 .

[40]  Michel Minoux,et al.  Exact solution of multicommodity network optimization problems with general step cost functions , 1999, Oper. Res. Lett..

[41]  Panos M. Pardalos,et al.  A Dynamic Domain Contraction Algorithm for Nonconvex Piecewise Linear Network Flow Problems* , 2000, J. Glob. Optim..

[42]  Panos M. Pardalos,et al.  A solution approach to the fixed charge network flow problem using a dynamic slope scaling procedure , 1999, Oper. Res. Lett..

[43]  Byung Ha Lim,et al.  A Minimax Portfolio Selection Rule with Linear Programming Solution , 1998 .

[44]  Kunio Kamimura,et al.  An efficient method for determining economical configurations of elementary packet-switched networks , 1991, IEEE Trans. Commun..

[45]  Marc Despontin,et al.  Multiple Criteria Optimization: Theory, Computation, and Application, Ralph E. Steuer (Ed.). Wiley, Palo Alto, CA (1986) , 1987 .

[46]  Thomas L. Magnanti,et al.  Modeling and Solving the Two-Facility Capacitated Network Loading Problem , 1995, Oper. Res..