Decomposition analysis and the mean-rate-of-change index

The mean-rate-of-change index (MRCI) is a recent addition to the suite of decomposition analysis (DA) methods. In addition to the arithmetic mean used by its originators, the MRCI can be formulated incorporating any type of mean. When the logarithmic mean is used, the MRCI is equivalent to the logarithmic mean Divisia index. The MRCI is said to produce plausible decompositions, and to be able to handle negative values. However, regarding the sign and magnitude of decomposition terms, the MRCI is affected by the same distortions and inconsistencies as other DA methods, and generally does not produce more plausible results. Moreover, the MRCI's ability to handle negative values is not necessarily an advantage in DA studies using input-output data. Finally, the MRCI is not robust.

[1]  Bart Los,et al.  Labor Productivity in Western Europe 1975-1985: An Intercountry, Interindustry Analysis , 2000 .

[2]  R. W. Shephard,et al.  Theory and Applications of Economic Indices , 1978 .

[3]  Fuqiang Zhang,et al.  Methodological issues in cross-country/region decomposition of energy and environment indicators , 2001 .

[4]  G. Hankinson,et al.  Electricity consumption, electricity intensity and industrial structure , 1983 .

[5]  B. W. Ang,et al.  Decomposition analysis for policymaking in energy:: which is the preferred method? , 2004 .

[6]  B. W. Ang,et al.  Some properties of an exact energy decomposition model , 2000 .

[7]  J. C. J. M. Bergh,et al.  Comparing structural decomposition analysis and index , 2003 .

[8]  B. W. Ang,et al.  A new energy decomposition method: perfect in decomposition and consistent in aggregation , 2001 .

[9]  W. B. Davis,et al.  Decomposition of aggregate carbon intensity for the manufacturing sector: comparison of declining trends from 10 OECD countries for the period 1971–1991 , 1998 .

[10]  B. W. Ang,et al.  Decomposition of aggregate energy intensity changes in two measures: ratio and difference , 2003 .

[11]  Ek Peng Chew,et al.  Perfect decomposition techniques in energy and environmental analysis , 2003 .

[12]  B. W. Ang,et al.  The Application of the Divisia Index to the Decomposition of Changes in Industrial Energy Consumption , 1992 .

[13]  B. W. Ang,et al.  A survey of index decomposition analysis in energy and environmental studies , 2000 .

[14]  Rosa Duarte,et al.  Comparison of energy intensities in European Union countries. Results of a structural decomposition analysis , 2004 .

[15]  Daan van Soest,et al.  International comparisons of domestic energy consumption , 2003 .

[16]  Manfred Lenzen,et al.  Zero-value problems of the logarithmic mean divisia index decomposition method , 2006 .

[17]  J. Bertrand STRUCTURAL CHANGE IN CHILE: 1960-1990 , 1999 .

[18]  L. Törnqvist,et al.  How Should Relative Changes be Measured , 1985 .

[19]  Bart Los,et al.  Analyzing Decomposition Analyses , 1997 .

[20]  Jiří Skolka,et al.  Input-output structural decomposition analysis for Austria☆ , 1989 .

[21]  Manfred Rudolph,et al.  Analysis of the factors influencing energy consumption in industry: A revised method , 1987 .

[22]  S. D. Bruyn Economic Growth and the Environment , 2000 .

[23]  B. W. Ang,et al.  Factorizing changes in energy and environmental indicators through decomposition , 1998 .

[24]  Delphine François,et al.  A Shapley decomposition of carbon emissions without residuals , 2002 .

[25]  B. W. Ang,et al.  Decomposition of industrial energy consumption: The energy intensity approach , 1994 .

[26]  A. Rose Input–Output Structural Decomposition Analysis of Energy and the Environment , 1999 .

[27]  Gale A. Boyd,et al.  Decomposition of changes in energy intensity: A comparison of the Divisia index and other methods☆ , 1988 .

[28]  Gale A. Boyd,et al.  Separating the Changing Composition of U.S. Manufacturing Production from Energy Efficiency Improvements: A Divisia Index Approach , 1987 .

[29]  M. D. Haan,et al.  A Structural Decomposition Analysis of Pollution in the Netherlands , 2001 .

[30]  Julian R. Betts Two exact, non-arbitrary and general methods of decomposing temporal change , 1989 .

[31]  J. Bergh Handbook of Environmental and Resource Economics , 1999 .

[32]  Hyun-Sik Chung,et al.  A residual-free decomposition of the sources of carbon dioxide emissions: a case of the Korean industries , 2001 .

[33]  B. W. Ang Multilevel decomposition of industrial energy consumption , 1995 .

[34]  B. Balk Axiomatic Price Index Theory: A Survey , 1995 .

[35]  John M. Gowdy,et al.  Technological and Demand Change in Energy Use: An Input—Output Analysis , 1987 .

[36]  Lee Schipper,et al.  Manufacturing energy use in OECD countries: decomposition of long-term trends , 1999 .

[37]  Rutger Hoekstra,et al.  Structural Decomposition Analysis of Physical Flows in the Economy , 2002 .

[38]  B. W. Ang,et al.  Decomposition methodology in industrial energy demand analysis , 1995 .

[39]  B. W. Ang,et al.  Decomposition of Aggregate Energy and Gas Emission Intensities for Industry: A Refined Divisia Index Method , 1997 .

[40]  Bart Los,et al.  Structural decomposition techniques : sense and sensitivity , 1998 .

[41]  J. Sun Changes in energy consumption and energy intensity: A complete decomposition model , 1998 .

[42]  B. W. Ang,et al.  Decomposition of industrial energy consumption: Some methodological and application issues , 1994 .

[43]  Adam Rose,et al.  INPUT-OUTPUT STRUCTURAL DECOMPOSITION ANALYSIS: A CRITICAL APPRAISAL , 1996 .

[44]  B. W. Ang Decomposition Methodology in Energy Demand and Environmental Analysis , 1999 .

[45]  Michael L. Lahr,et al.  Input-output analysis: frontiers and extensions , 2001 .

[46]  Gerhard Wagenhals,et al.  Reducing CO2 Emissions , 1993 .

[47]  B. W. Ang,et al.  Eight methods for decomposing the aggregate energy-intensity of industry , 2003 .