Spatially resolved rotation of the broad-line region of a quasar at sub-parsec scale

[1]  L. Ho,et al.  Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. IX. 10 New Observations of Reverberation Mapping and Shortened Hβ Lags , 2018, 1802.03022.

[2]  Ran Wang,et al.  The Sloan Digital Sky Survey Reverberation Mapping Project: Hα and Hβ Reverberation Measurements from First-year Spectroscopy and Photometry , 2017, 1711.03114.

[3]  A. Lähteenmäki,et al.  Kinematics of Parsec-scale Jets of Gamma-Ray Blazars at 43 GHz within the VLBA-BU-BLAZAR Program , 2017, 1711.03983.

[4]  K. Long,et al.  The reverberation signatures of rotating disc winds in active galactic nuclei , 2017, 1707.07687.

[5]  Yan-Rong Li,et al.  Failed Radiatively Accelerated Dusty Outflow Model of the Broad Line Region in Active Galactic Nuclei. I. Analytical Solution , 2017, 1706.07958.

[6]  T. Treu,et al.  The Structure of the Broad-line Region in Active Galactic Nuclei. II. Dynamical Modeling of Data From the AGN10 Reverberation Mapping Campaign , 2017, 1705.02346.

[7]  G. Perrin,et al.  Submilliarcsecond Optical Interferometry of the High-mass X-Ray Binary BP Cru with VLTI/GRAVITY , 2017, 1705.02351.

[8]  S. Rabien,et al.  First light for GRAVITY: Phase referencing optical interferometry for the Very Large Telescope Interferometer , 2017, 1705.02345.

[9]  J. Silk,et al.  Magnetically elevated accretion disks in active galactic nuclei: broad emission line regions and associated star formation , 2016, 1609.09456.

[10]  H. Netzer Revisiting the Unified Model of Active Galactic Nuclei , 2015, 1505.00811.

[11]  Romain G. Petrov,et al.  Differential interferometry of QSO broad-line regions – I. Improving the reverberation mapping model fits and black hole mass estimates , 2014, 1410.4837.

[12]  Gerd Weigelt,et al.  VLTI/AMBER differential interferometry of the broad-line region of the quasar 3C273 , 2014, Other Conferences.

[13]  A. Amorim,et al.  GRAVITY data reduction software , 2014, Astronomical Telescopes and Instrumentation.

[14]  Brendon J. Brewer,et al.  Modelling reverberation mapping data – I. Improved geometric and dynamical models and comparison with cross-correlation results , 2014, 1407.2941.

[15]  Brendon J. Brewer,et al.  Modelling reverberation mapping data – II. Dynamical modelling of the Lick AGN Monitoring Project 2008 data set , 2013, 1311.6475.

[16]  Bradley M. Peterson,et al.  THE LOW-LUMINOSITY END OF THE RADIUS–LUMINOSITY RELATIONSHIP FOR ACTIVE GALACTIC NUCLEI , 2013, 1303.1742.

[17]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[18]  Francoise Delplancke,et al.  Optical and Infrared Interferometry III , 2012 .

[19]  K. Korista,et al.  The broad emission-line region: the confluence of the outer accretion disc with the inner edge of the dusty torus , 2012, 1207.6339.

[20]  Gerd Weigelt,et al.  The innermost dusty structure in active galactic nuclei as probed by the Keck interferometer , 2010, 1012.5359.

[21]  C. S. Kochanek,et al.  AN ALTERNATIVE APPROACH TO MEASURING REVERBERATION LAGS IN ACTIVE GALACTIC NUCLEI , 2010, 1008.0641.

[22]  W. D. Vacca,et al.  THE INFRARED TELESCOPE FACILITY (IRTF) SPECTRAL LIBRARY: COOL STARS , 2009, 0909.0818.

[23]  Stefan Kraus,et al.  AMBER closure and differential phases: accuracy and calibration with a beam commutation , 2008, Astronomical Telescopes + Instrumentation.

[24]  Yolanda Stapleton Love Love Love , 2008 .

[25]  E. Tatulli,et al.  Interferometric data reduction with AMBER/VLTI. Principle, estimators, and illustration. , 2006, astro-ph/0603046.

[26]  Helsinki University of Technology,et al.  Multifrequency VLBA monitoring of 3C 273 during the INTEGRAL Campaign in 2003 - I. Kinematics of the parsec scale jet from 43 GHz data , 2005, astro-ph/0509623.

[27]  M. Baes,et al.  A fundamental relation between supermassive black holes and dark matter haloes. , 2005 .

[28]  B. M. Peterson,et al.  Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. II. A Homogeneous Analysis of a Large Reverberation-Mapping Database , 2004, astro-ph/0407299.

[29]  R. Lachaume On marginally resolved objects in optical interferometry , 2003, astro-ph/0304259.

[30]  M. Karovska,et al.  Quasar Parallax: A Method for Determining Direct Geometrical Distances to Quasars , 2002, astro-ph/0211385.

[31]  A. Lobanov,et al.  A Cosmic Double Helix in the Archetypical Quasar 3C273 , 2001, Science.

[32]  Ralf Bender,et al.  A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion , 2000, astro-ph/0006289.

[33]  D. Merritt,et al.  A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies , 2000, astro-ph/0006053.

[34]  Paul S. Smith,et al.  Reverberation Measurements for 17 Quasars and the Size-Mass-Luminosity Relations in Active Galactic Nuclei , 1999, astro-ph/9911476.

[35]  T. D. Matteo,et al.  Active Galactic Nuclei: From the Central Black Hole to the Galactic Environment , 2000 .

[36]  J. Bailey Detection of pre-main-sequence binaries using spectro-astrometry , 1998 .

[37]  N. Murray,et al.  Reverberation mapping and the disk wind model of the broad line region , 1995, astro-ph/9511006.

[38]  M. Eracleous,et al.  Doubled-peaked emission lines in active galactic nuclei , 1994 .

[39]  K. Meisenheimer,et al.  The synchrotron light from the jet of 3C 273 , 1991 .

[40]  Christopher F. McKee,et al.  Reverberation mapping of the emission line regions of Seyfert galaxies and quasars. , 1982 .

[41]  J. Baldwin Luminosity Indicators in the Spectra of Quasi-Stellar Objects , 1977 .

[42]  M. Schmidt,et al.  3C 273 : A Star-Like Object with Large Red-Shift , 1963, Nature.