Tsetse fly saliva biases the immune response to Th2 and induces anti-vector antibodies that are a useful tool for exposure assessment.

[1]  J. Sternberg,et al.  Intrathecal cytokine responses in Trypanosoma brucei rhodesiense sleeping sickness patients. , 2006, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[2]  K. Chang,et al.  Sand fly specificity of saliva-mediated protective immunity in Leishmania amazonensis-BALB/c mouse model. , 2005, Microbes and infection.

[3]  J. Aliberti,et al.  Tick saliva inhibits differentiation, maturation and function of murine bone‐marrow‐derived dendritic cells , 2005, Immunology.

[4]  P. Volf,et al.  Detection of species-specific antibody response of humans and mice bitten by sand flies , 2005, Parasitology.

[5]  S. Higgs,et al.  Aedes aegypti salivary gland extracts modulate anti-viral and TH1/TH2 cytokine responses to sindbis virus infection. , 2004, Viral immunology.

[6]  T. Kinashi,et al.  The role of antigenic peptide in CD4+ T helper phenotype development in a T cell receptor transgenic model. , 2004, International immunology.

[7]  D. Champagne Antihemostatic strategies of blood-feeding arthropods. , 2004, Current drug targets. Cardiovascular & haematological disorders.

[8]  J. Valenzuela,et al.  Identification of the most abundant secreted proteins from the salivary glands of the sand fly Lutzomyia longipalpis, vector of Leishmania chagasi , 2004, Journal of Experimental Biology.

[9]  Ruth R. Montgomery,et al.  Tick Saliva Reduces Adherence and Area of Human Neutrophils , 2004, Infection and Immunity.

[10]  G. Nepom,et al.  Differential Antigen Sensitivity and Costimulatory Requirements in Human Th1 and Th2 Antigen-Specific CD4+ Cells with Similar TCR Avidity 1 , 2003, The Journal of Immunology.

[11]  T. Pearson,et al.  Identification of major soluble salivary gland proteins in teneral Glossina morsitans morsitans. , 2002, Insect biochemistry and molecular biology.

[12]  E. Fikrig,et al.  Salp15, an ixodes scapularis salivary protein, inhibits CD4(+) T cell activation. , 2002, Immunity.

[13]  P. Nuttall,et al.  Heterogeneity in the effect of different ixodid tick species on human natural killer cell activity , 2002, Parasite immunology.

[14]  L. Kovář,et al.  SALIVARY GLAND EXTRACT FROM IXODES RICINUS TICK POLARIZES THE CYTOKINE PROFILE TOWARD TH2 AND SUPPRESSES PROLIFERATION OF T LYMPHOCYTES IN HUMAN PBMC CULTURE , 2001, The Journal of parasitology.

[15]  C. Shoemaker,et al.  Sandfly Maxadilan Exacerbates Infection with Leishmania major and Vaccinating Against It Protects Against L. major Infection1 , 2001, The Journal of Immunology.

[16]  Y. Belkaid,et al.  Toward a Defined Anti-Leishmania Vaccine Targeting Vector Antigens , 2001, The Journal of experimental medicine.

[17]  S. Aksoy,et al.  Characterization of genes expressed in the salivary glands of the tsetse fly, Glossina morsitans morsitans , 2001, Insect molecular biology.

[18]  N. Franscini,et al.  Th2 polarization of the immune response of BALB/c mice to Ixodes ricinus instars, importance of several antigens in activation of specific Th2 subpopulations , 2001, Parasite immunology.

[19]  Y. Belkaid,et al.  Protection against cutaneous leishmaniasis resulting from bites of uninfected sand flies. , 2000, Science.

[20]  T. P. King,et al.  Structure and Biology of Stinging Insect Venom Allergens , 2000, International Archives of Allergy and Immunology.

[21]  S. Aksoy,et al.  A family of genes with growth factor and adenosine deaminase similarity are preferentially expressed in the salivary glands of Glossina m. morsitans. , 2000, Gene.

[22]  J. Kopecký,et al.  Salivary gland extract from Ixodes ricinus ticks inhibits production of interferon‐γ by the upregulation of interleukin‐10 , 1999, Parasite immunology.

[23]  G. Hide History of Sleeping Sickness in East Africa , 1999, Clinical Microbiology Reviews.

[24]  H. Filutowicz,et al.  Resistance to the African trypanosomes is IFN-gamma dependent. , 1998, Journal of immunology.

[25]  Y. Belkaid,et al.  Development of a Natural Model of Cutaneous Leishmaniasis: Powerful Effects of  Vector Saliva and Saliva Preexposure on the Long-Term Outcome of Leishmania major Infection in the Mouse Ear Dermis , 1998, The Journal of experimental medicine.

[26]  C. J. Whitaker,et al.  Factors influencing the prevalence of trypanosome infection of Glossina pallidipes on the Ruvu flood plain of Eastern Tanzania. , 1998, Acta tropica.

[27]  J. Bodo,et al.  Characterization of trypanosome infections by polymerase chain reaction (PCR) amplification in wild tsetse flies in Cameroon , 1998, Parasitology.

[28]  P. De Baetselier,et al.  Trypanosoma brucei infection elicits nitric oxide‐dependent and nitric oxide‐independent suppressive mechanisms , 1998, Journal of leukocyte biology.

[29]  M. Soares,et al.  The vasoactive peptide maxadilan from sand fly saliva inhibits TNF-alpha and induces IL-6 by mouse macrophages through interaction with the pituitary adenylate cyclase-activating polypeptide (PACAP) receptor. , 1998, Journal of immunology.

[30]  J. Mukhopadhyay,et al.  The effect of anti-sandfly saliva antibodies on Phlebotomus argentipes and Leishmania donovani. , 1998, International journal for parasitology.

[31]  S. Constant,et al.  Induction of IL-4-producing CD4+ T cells by antigenic peptides altered for TCR binding. , 1997, Journal of immunology.

[32]  R. Titus,et al.  Effects of sand fly vector saliva on development of cutaneous lesions and the immune response to Leishmania braziliensis in BALB/c mice , 1996, Infection and immunity.

[33]  D. Pritchard,et al.  Isolation and characterization of the tsetse thrombin inhibitor: a potent antithrombotic peptide from the saliva of Glossina morsitans morsitans. , 1996, The American journal of tropical medicine and hygiene.

[34]  Y. Belkaid,et al.  A method to recover, enumerate and identify lymphomyeloid cells present in an inflammatory dermal site: a study in laboratory mice. , 1996, Journal of immunological methods.

[35]  K. Murphy,et al.  The effect of antigen dose on CD4+ T helper cell phenotype development in a T cell receptor-alpha beta-transgenic model , 1995, The Journal of experimental medicine.

[36]  M. Feldmann,et al.  Critical role of CD28/B7 costimulation in the development of human Th2 cytokine-producing cells. , 1995, Blood.

[37]  A. Woodard,et al.  Extent of T cell receptor ligation can determine the functional differentiation of naive CD4+ T cells , 1995, The Journal of experimental medicine.

[38]  R. Titus,et al.  Sand fly vector saliva selectively modulates macrophage functions that inhibit killing of Leishmania major and nitric oxide production. , 1995, Journal of immunology.

[39]  A. Sette,et al.  Altered peptide ligands can control CD4 T lymphocyte differentiation in vivo , 1995, The Journal of experimental medicine.

[40]  C. June,et al.  CD28 activation promotes Th2 subset differentiation by human CD4+ cells , 1995, European journal of immunology.

[41]  A. Sher,et al.  Interleukin 12 acts directly on CD4+ T cells to enhance priming for interferon gamma production and diminishes interleukin 4 inhibition of such priming. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[42]  R. Titus,et al.  Salivary gland material from the sand fly Lutzomyia longipalpis has an inhibitory effect on macrophage function in vitro , 1993, Parasite immunology.

[43]  C. Hsieh,et al.  Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. , 1993, Science.

[44]  S. Telford,et al.  Saliva of the tick Ixodes dammini inhibits neutrophil function. , 1990, Experimental parasitology.

[45]  R. Titus,et al.  Salivary gland lysates from the sand fly Lutzomyia longipalpis enhance Leishmania infectivity. , 1988, Science.

[46]  T. P. King,et al.  cDNA cloning and primary structure of a white-face hornet venom allergen, antigen 5. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[47]  J. Ellis,et al.  Lesions and Saliva-Specific Antibody Responses in Rabbits with Immediate and Delayed Hypersensitivity Reactions to the Bites of Glossina morsitans centralis , 1986, Veterinary pathology.

[48]  M. Mant,et al.  Two Platelet Aggregation Inhibitors in Tsetse (Glossina) Saliva with Studies of Roles of Thrombin and Citrate in in Vitro Platelet Aggregation , 1981, British journal of haematology.

[49]  R. Gooding,et al.  Effects of host anemia, local skin factors, and circulating antibodies upon biology of laboratory reared Glossina morsitans morsitans Westwood (Diptera: Glossinidae). , 1979, Canadian journal of zoology.

[50]  L. Otieno,et al.  The abundance of pathogenic African trypanosomes in the salivary secretions of wild Glossina pallidipes. , 1979, Annals of tropical medicine and parasitology.

[51]  H. Towbin,et al.  Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[52]  M. Mant,et al.  Effects of Tsetse (Glossina morsitans morsitans Westw.) (Diptera: Glossinidae) Salivary Gland Homogenate on Coagulation and Fibrinolysis , 1979, Thrombosis and Haemostasis.

[53]  J. Weiser,et al.  Detection of antigens common to salivary glands and other tissues of tsetse fly, Glossina palpalis palpalis (Diptera: Glossinidae). , 1988, Folia Parasitologica.

[54]  A. Youdeowei Salivary secretion in three species of tsetse flies (Glossinidae). , 1975, Acta tropica.