Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration

[1]  P. Shen,et al.  Palladium thorn clusters as catalysts for electrooxidation of formic acid , 2011 .

[2]  P. Kenis,et al.  Ionic Liquid–Mediated Selective Conversion of CO2 to CO at Low Overpotentials , 2011, Science.

[3]  Karsten W. Jacobsen,et al.  An object-oriented scripting interface to a legacy electronic structure code , 2002, Comput. Sci. Eng..

[4]  Kaname Ito,et al.  Kinetics of Electrochemical Reduction of Carbon Dioxide on a Gold Electrode in Phosphate Buffer Solutions , 1995 .

[5]  V. A. Morozov,et al.  Finite Size Effects in Chemical Bonding: From Small Clusters to Solids , 2011 .

[6]  K. Landskron,et al.  Supercapacitive swing adsorption of carbon dioxide. , 2014, Angewandte Chemie.

[7]  S. Back,et al.  Active Sites of Au and Ag Nanoparticle Catalysts for CO2 Electroreduction to CO , 2015 .

[8]  G. Henkelman,et al.  A grid-based Bader analysis algorithm without lattice bias , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[9]  D. Goodman,et al.  Methanation of carbon dioxide on Ni(100) and the effects of surface modifiers , 1983 .

[10]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[11]  Kristin B Cederquist,et al.  An ultrasensitive universal detector based on neutralizer displacement. , 2012, Nature chemistry.

[12]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[13]  Qingfeng Zhang,et al.  Facet-Dependent Catalytic Activities of Au Nanoparticles Enclosed by High-Index Facets , 2014 .

[14]  Shana O Kelley,et al.  Programming the detection limits of biosensors through controlled nanostructuring. , 2009, Nature nanotechnology.

[15]  Robert Schlögl,et al.  The Mechanism of CO and CO2 Hydrogenation to Methanol over Cu‐Based Catalysts , 2015 .

[16]  Matthew W. Kanan,et al.  Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts. , 2012, Journal of the American Chemical Society.

[17]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[18]  Shoushan Fan,et al.  Grain-boundary-dependent CO2 electroreduction activity. , 2015, Journal of the American Chemical Society.

[19]  Andrew A. Peterson,et al.  How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels , 2010 .

[20]  Laurent Pilon,et al.  Accurate Simulations of Electric Double Layer Capacitance of Ultramicroelectrodes , 2011 .

[21]  M. Zerner,et al.  A Broyden—Fletcher—Goldfarb—Shanno optimization procedure for molecular geometries , 1985 .

[22]  Matthew W. Kanan,et al.  Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper , 2014, Nature.

[23]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[24]  Brian E. Conway,et al.  Modern Aspects of Electrochemistry , 1974 .

[25]  Feng Jiao,et al.  A selective and efficient electrocatalyst for carbon dioxide reduction , 2014, Nature Communications.

[26]  G. U. Kulkarni,et al.  Facet selective etching of Au microcrystallites , 2015, Nano Research.

[27]  Hongyi Zhang,et al.  Active and selective conversion of CO2 to CO on ultrathin Au nanowires. , 2014, Journal of the American Chemical Society.

[28]  Haifeng Lv,et al.  Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. , 2013, Journal of the American Chemical Society.

[29]  P. Strasser,et al.  Controlling the selectivity of CO2 electroreduction on copper: The effect of the electrolyte concentration and the importance of the local pH , 2016 .

[30]  M. Kanan,et al.  Pd-catalyzed electrohydrogenation of carbon dioxide to formate: high mass activity at low overpotential and identification of the deactivation pathway. , 2015, Journal of the American Chemical Society.

[31]  N. Hazari,et al.  Secondary coordination sphere interactions facilitate the insertion step in an iridium(III) CO2 reduction catalyst. , 2011, Journal of the American Chemical Society.

[32]  A. M. Friedman,et al.  The Self-diffusion Coefficients of Potassium, Cesium, Iodide and Chloride Ions in Aqueous Solutions1 , 1955 .

[33]  Matthew W. Kanan,et al.  Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. , 2012, Journal of the American Chemical Society.

[34]  Robert T McGibbon,et al.  Electrocatalytic carbon dioxide activation: the rate-determining step of pyridinium-catalyzed CO2 reduction. , 2011, ChemSusChem.

[35]  P. Yang,et al.  Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water , 2015, Science.

[36]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[37]  Shana O Kelley,et al.  Nanostructuring of sensors determines the efficiency of biomolecular capture. , 2010, Analytical chemistry.

[38]  Y. Hori,et al.  Electrochemical CO 2 Reduction on Metal Electrodes , 2008 .

[39]  C. V. Singh,et al.  Illuminating CO2 reduction on frustrated Lewis pair surfaces: investigating the role of surface hydroxides and oxygen vacancies on nanocrystalline In2O(3-x)(OH)y. , 2015, Physical chemistry chemical physics : PCCP.

[40]  Wei Wang,et al.  Recent Advances in Catalytic Hydrogenation of Carbon Dioxide , 2011 .

[41]  J. Savéant,et al.  A Local Proton Source Enhances CO2 Electroreduction to CO by a Molecular Fe Catalyst , 2012, Science.

[42]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[43]  D. Goodman,et al.  METHANATION OF CARBON DIOXIDE ON NICKEL(100) AND THE EFFECTS OF SURFACE MODIFIERS , 1984 .

[44]  Shana O Kelley,et al.  Tuning the bacterial detection sensitivity of nanostructured microelectrodes. , 2013, Analytical chemistry.

[45]  Jiujun Zhang,et al.  A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. , 2014, Chemical Society reviews.

[46]  Jinlong Yang,et al.  Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel , 2016, Nature.