Image Interpretation Using Multiple Sensing Modalities

The AIMS (automatic interpretation using multiple sensors) system, which uses registered laser radar and thermal imagers, is discussed. Its objective is to detect and recognize man-made objects at kilometer range in outdoor scenes. The multisensor fusion approach is applied to four sensing modalities (range, intensity, velocity, and thermal) to improve both image segmentation and interpretation. Low-level attributes of image segments (regions) are computed by the segmentation modules and then converted to the KEE format. The knowledge-based interpretation modules are constructed using KEE and Lisp. AIMS applies forward chaining in a bottom-up fashion to derive object-level interpretations from databases generated by the low-level processing modules. The efficiency of the interpretaton process is enhanced by transferring nonsymbolic processing tasks to a concurrent service manager (program). A parallel implementation of the interpretation module is reported. Experimental results using real data are presented. >

[1]  William J. Clancey,et al.  Heuristic Classification , 1986, Artif. Intell..

[2]  William S. Havens,et al.  Knowledge Structuring and Constraint Satisfaction: The Mapsee Approach , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  John P. McDermott,et al.  Rule-Based Interpretation of Aerial Imagery , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Allen Newell,et al.  Parallel OPS5 on the Encore Multimax , 1988, ICPP.

[5]  C.-C. Chu,et al.  Multi-sensor image interpretation using laser radar and thermal images , 1991, [1991] Proceedings. The Seventh IEEE Conference on Artificial Intelligence Application.

[6]  John F. Haddon,et al.  Image Segmentation by Unifying Region and Boundary Information , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  D.E. Dudgeon,et al.  An experimental target recognition system for airborne laser radar imagery , 1990, 1990 IEEE International Conference on Systems Engineering.

[8]  Steven K. Rogers,et al.  Multisensor Data Fusion Of Laser Radar And Forward Looking Infrared (FLIR) For Target Segmentation And Enhancement , 1987, Other Conferences.

[9]  Allen R. Hanson,et al.  Extracting Straight Lines , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Anil K. Jain,et al.  Evidence-Based Recognition of 3-D Objects , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Alan C. Bovik,et al.  Visible surface reconstruction via local minimax approximation , 1988, Pattern Recognit..

[12]  Jake K. Aggarwal,et al.  Image segmentation using laser radar data , 1990, Pattern Recognit..

[13]  Jake K. Aggarwal,et al.  Integrated Analysis of Thermal and Visual Images for Scene Interpretation , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  C. G. Bachman Laser radar systems and techniques , 1979 .

[15]  Theodosios Pavlidis,et al.  Integrating Region Growing and Edge Detection , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Jacques Verly,et al.  An experimental target recognition system for laser radar imagery , 1989 .

[17]  Frank P. Incropera,et al.  Fundamentals of Heat and Mass Transfer , 1981 .

[18]  Bir Bhanu,et al.  Model-based segmentation of FLIR images , 1990 .

[19]  Jake K. Aggarwal,et al.  The integration of region and edge-based segmentation , 1990, [1990] Proceedings Third International Conference on Computer Vision.