Separators in region intersection graphs

For undirected graphs $G=(V,E)$ and $G_0=(V_0,E_0)$, say that $G$ is a region intersection graph over $G_0$ if there is a family of connected subsets $\{ R_u \subseteq V_0 : u \in V \}$ of $G_0$ such that $\{u,v\} \in E \iff R_u \cap R_v \neq \emptyset$. We show if $G_0$ excludes the complete graph $K_h$ as a minor for some $h \geq 1$, then every region intersection graph $G$ over $G_0$ with $m$ edges has a balanced separator with at most $c_h \sqrt{m}$ nodes, where $c_h$ is a constant depending only on $h$. If $G$ additionally has uniformly bounded vertex degrees, then such a separator is found by spectral partitioning. A string graph is the intersection graph of continuous arcs in the plane. The preceding result implies that every string graph with $m$ edges has a balanced separator of size $O(\sqrt{m})$. This bound is optimal, as it generalizes the planar separator theorem. It confirms a conjecture of Fox and Pach (2010), and improves over the $O(\sqrt{m} \log m)$ bound of Matousek (2013).

[1]  Philip N. Klein,et al.  Excluded minors, network decomposition, and multicommodity flow , 1993, STOC.

[2]  Jan Kratochvíl,et al.  String graphs. II. recognizing string graphs is NP-hard , 1991, J. Comb. Theory, Ser. B.

[3]  Jirí Matousek,et al.  Near-Optimal Separators in String Graphs , 2013, Combinatorics, Probability and Computing.

[4]  James R. Lee,et al.  Embeddings of Topological Graphs: Lossy Invariants, Linearization, and 2-Sums , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[5]  Marcus Schaefer,et al.  Recognizing string graphs in NP , 2002, STOC '02.

[6]  A. Kostochka The minimum Hadwiger number for graphs with a given mean degree of vertices , 1982 .

[7]  James R. Lee,et al.  Improved approximation algorithms for minimum-weight vertex separators , 2005, STOC '05.

[8]  Frank Thomson Leighton,et al.  Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms , 1999, JACM.

[9]  János Pach,et al.  Applications of a New Separator Theorem for String Graphs , 2013, Combinatorics, Probability and Computing.

[10]  Yuri Rabinovich,et al.  On Average Distortion of Embedding Metrics into the Line , 2008, Discret. Comput. Geom..

[11]  Shang-Hua Teng,et al.  Spectral partitioning works: planar graphs and finite element meshes , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[12]  Anupam Gupta,et al.  Cuts, Trees and ℓ1-Embeddings of Graphs* , 2004, Comb..

[13]  James R. Lee,et al.  Metric Uniformization and Spectral Bounds for Graphs , 2010, ArXiv.

[14]  James R. Lee,et al.  Eigenvalue Bounds, Spectral Partitioning, and Metrical Deformations via Flows , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[15]  Gary L. Miller,et al.  Separators for sphere-packings and nearest neighbor graphs , 1997, JACM.

[16]  Jan Kratochvíl,et al.  String graphs requiring exponential representations , 1991, J. Comb. Theory, Ser. B.

[17]  A. Thomason An extremal function for contractions of graphs , 1984, Mathematical Proceedings of the Cambridge Philosophical Society.

[18]  James R. Lee,et al.  A node-capacitated Okamura–Seymour theorem , 2015, Math. Program..

[19]  R. J. Duffin,et al.  The extremal length of a network , 1962 .

[20]  M. Gromov Metric Structures for Riemannian and Non-Riemannian Spaces , 1999 .

[21]  Kunal Talwar,et al.  An Improved Decomposition Theorem for Graphs Excluding a Fixed Minor , 2003, RANDOM-APPROX.

[22]  J. Bourgain On lipschitz embedding of finite metric spaces in Hilbert space , 1985 .

[23]  Marcus Schaefer,et al.  Decidability of string graphs , 2001, STOC '01.

[24]  Konstantin Makarychev,et al.  Metric extension operators, vertex sparsifiers and Lipschitz extendability , 2016 .

[25]  N. Alon,et al.  A separator theorem for nonplanar graphs , 1990 .

[26]  Csaba D. Tóth,et al.  A bipartite strengthening of the Crossing Lemma , 2007, J. Comb. Theory, Ser. B.

[27]  James R. Lee,et al.  Extending Lipschitz functions via random metric partitions , 2005 .

[28]  Jirí Matousek String graphs and separators , 2014, Geometry, Structure and Randomness in Combinatorics.

[29]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[30]  R. Tarjan,et al.  A Separator Theorem for Planar Graphs , 1977 .

[31]  V. Milman,et al.  Asymptotic Theory Of Finite Dimensional Normed Spaces , 1986 .

[32]  János Pach,et al.  A Separator Theorem for String Graphs and its Applications , 2009, Combinatorics, Probability and Computing.