Separators in region intersection graphs
暂无分享,去创建一个
[1] Philip N. Klein,et al. Excluded minors, network decomposition, and multicommodity flow , 1993, STOC.
[2] Jan Kratochvíl,et al. String graphs. II. recognizing string graphs is NP-hard , 1991, J. Comb. Theory, Ser. B.
[3] Jirí Matousek,et al. Near-Optimal Separators in String Graphs , 2013, Combinatorics, Probability and Computing.
[4] James R. Lee,et al. Embeddings of Topological Graphs: Lossy Invariants, Linearization, and 2-Sums , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.
[5] Marcus Schaefer,et al. Recognizing string graphs in NP , 2002, STOC '02.
[6] A. Kostochka. The minimum Hadwiger number for graphs with a given mean degree of vertices , 1982 .
[7] James R. Lee,et al. Improved approximation algorithms for minimum-weight vertex separators , 2005, STOC '05.
[8] Frank Thomson Leighton,et al. Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms , 1999, JACM.
[9] János Pach,et al. Applications of a New Separator Theorem for String Graphs , 2013, Combinatorics, Probability and Computing.
[10] Yuri Rabinovich,et al. On Average Distortion of Embedding Metrics into the Line , 2008, Discret. Comput. Geom..
[11] Shang-Hua Teng,et al. Spectral partitioning works: planar graphs and finite element meshes , 1996, Proceedings of 37th Conference on Foundations of Computer Science.
[12] Anupam Gupta,et al. Cuts, Trees and ℓ1-Embeddings of Graphs* , 2004, Comb..
[13] James R. Lee,et al. Metric Uniformization and Spectral Bounds for Graphs , 2010, ArXiv.
[14] James R. Lee,et al. Eigenvalue Bounds, Spectral Partitioning, and Metrical Deformations via Flows , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.
[15] Gary L. Miller,et al. Separators for sphere-packings and nearest neighbor graphs , 1997, JACM.
[16] Jan Kratochvíl,et al. String graphs requiring exponential representations , 1991, J. Comb. Theory, Ser. B.
[17] A. Thomason. An extremal function for contractions of graphs , 1984, Mathematical Proceedings of the Cambridge Philosophical Society.
[18] James R. Lee,et al. A node-capacitated Okamura–Seymour theorem , 2015, Math. Program..
[19] R. J. Duffin,et al. The extremal length of a network , 1962 .
[20] M. Gromov. Metric Structures for Riemannian and Non-Riemannian Spaces , 1999 .
[21] Kunal Talwar,et al. An Improved Decomposition Theorem for Graphs Excluding a Fixed Minor , 2003, RANDOM-APPROX.
[22] J. Bourgain. On lipschitz embedding of finite metric spaces in Hilbert space , 1985 .
[23] Marcus Schaefer,et al. Decidability of string graphs , 2001, STOC '01.
[24] Konstantin Makarychev,et al. Metric extension operators, vertex sparsifiers and Lipschitz extendability , 2016 .
[25] N. Alon,et al. A separator theorem for nonplanar graphs , 1990 .
[26] Csaba D. Tóth,et al. A bipartite strengthening of the Crossing Lemma , 2007, J. Comb. Theory, Ser. B.
[27] James R. Lee,et al. Extending Lipschitz functions via random metric partitions , 2005 .
[28] Jirí Matousek. String graphs and separators , 2014, Geometry, Structure and Randomness in Combinatorics.
[29] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[30] R. Tarjan,et al. A Separator Theorem for Planar Graphs , 1977 .
[31] V. Milman,et al. Asymptotic Theory Of Finite Dimensional Normed Spaces , 1986 .
[32] János Pach,et al. A Separator Theorem for String Graphs and its Applications , 2009, Combinatorics, Probability and Computing.