Absence of dissipative solutions of the schrodinger and klein-gordon equations with logarithmic
暂无分享,去创建一个
[1] Hefter,et al. Application of the nonlinear Schrödinger equation with a logarithmic inhomogeneous term to nuclear physics. , 1985, Physical review. A, General physics.
[2] T. Cazenave. Stable solutions of the logarithmic Schrödinger equation , 1983 .
[3] Anthony G. Klein,et al. Neutron optical tests of nonlinear wave mechanics , 1981 .
[4] Michael A. Horne,et al. Search for a Nonlinear Variant of the Schrödinger Equation by Neutron Interferometry , 1980 .
[5] A. Haraux,et al. Équations d'évolution avec non linéarité logarithmique , 1980 .
[6] A. Shimony. Search for a naturalistic world view: Proposed neutron interferometer test of some nonlinear variants of wave mechanics , 1979 .
[7] T. Morris. Non-dissipative character of solutions of a class of nonlinear klein-gordon equations , 1978 .
[8] J. Werle. Localized solutions of non-linear Klein-gordon equations , 1977 .
[9] I. Bialynicki-Birula,et al. Nonlinear Wave Mechanics , 1976 .
[10] Judah L. Schwartz,et al. Computer-Generated Motion Pictures of One-Dimensional Quantum-Mechanical Transmission and Reflection Phenomena , 1967 .