Light dement geochemistry of the Tagish Lake CI2 chondrite: Comparison with CI1 and CM2 meteorites
暂无分享,去创建一个
Ian A. Franchi | Ian Wright | Monica M. Grady | C. T. Pillinger | A. B. Verchovsky | C. Pillinger | I. Franchi | I. Wright | A. Verchovsky | M. Grady | Ian Wright | Ian A. Franchi | Monica M. Grady | C. Pillinger
[1] G. Wasserburg,et al. Isotopic systematics of presolar silicon carbide from the Orgueil (CI) chondrite: Implications for solar system formation and stellar nucleosynthesis , 1997 .
[2] R. Clayton,et al. Oxygen isotope studies of carbonaceous chondrites , 1999 .
[3] B. Wopenka,et al. Interstellar graphite in meteorites: Isotopic compositions and structural properties of single graphite grains from Murchison , 1995 .
[4] Akai Junji. Mineralogical evidence of heating events in Antarctic carbonaceous chondrites, Y-86720 and Y-82162 , 1990 .
[5] H. McSween,et al. Minor and trace element concentrations in carbonates of carbonaceous chondrites, and implications for the compositions of coexisting fluids , 1994 .
[6] Gary R. Huss,et al. Ubiquitous interstellar diamond and SiC in primitive chondrites: abundances reflect metamorphism , 1990, Nature.
[7] A. Bischoff,et al. Carbonates in CI chondrites: clues to parent body evolution. , 1996, Geochimica et cosmochimica acta.
[8] M. Zolensky,et al. CM chondrites exhibit the complete petrologic range from type 2 to 1. [Abstract only] , 1994 .
[9] Young,et al. Fluid flow in chondritic parent bodies: deciphering the compositions of planetesimals , 1999, Science.
[10] C. Pillinger,et al. A carbon and nitrogen isotope study of diamond from primitive chondrites , 1996 .
[11] C. Pillinger,et al. Presolar silicon carbide from the Indarch (EH4) meteorite: Comparison with silicon carbide populations from other meteorite classes , 1997 .
[12] J. Nuth,et al. Laboratory Studies of Catalysis of CO to Organics on Grain Analogs , 2000 .
[13] P. Hoppe,et al. Carbon, nitrogen, magnesium, silicon, and titanium isotopic compositions of single interstellar silicon carbide grains from the Murchison carbonaceous chondrite , 1994 .
[14] Sherwood Chang,et al. Organic matter in meteorites: molecular and isotopic analyses of the Murchison meteorite. , 1993 .
[15] E. Anders,et al. Carbon Isotope Fractionation in the Fischer-Tropsch Synthesis and in Meteorites , 1970, Science.
[16] S. Woosley,et al. Low-Density Graphite Grains and Mixing in Type II Supernovae , 1999 .
[17] C. Pillinger,et al. Carbon and Nitrogen Isotopes in Type II Supernova Diamonds , 1995 .
[18] C. T. Pillinger,et al. Aromatic moieties in meteoritic macromolecular materials: analyses by hydrous pyrolysis and δ13C of individual compounds , 2000 .
[19] S. Epstein,et al. Carbon, hydrogen and nitrogen isotopes in solvent-extractable organic matter from carbonaceous chondrites , 1982 .
[20] C. Pillinger,et al. Evidence for Multiple Sources of Diamond from Primitive Chondrites , 1991, Science.
[21] J. Kerridge. Carbon, hydrogen and nitrogen in carbonaceous chondrites: abundances and isotopic compositions in bulk samples. , 1985, Geochimica et cosmochimica acta.
[22] E. Zinner,et al. Interstellar grains within interstellar grains , 1991 .
[23] C. Alexander. Presolar SiC in chondrites: How variable and how many sources? , 1993 .
[24] P G Brown,et al. The fall, recovery, orbit, and composition of the Tagish Lake meteorite: a new type of carbonaceous chondrite. , 2000, Science.
[25] C. Johnson,et al. Carbonate compositions in CM and CI chondrites, and implications for aqueous alteration , 1993 .
[26] E. Anders,et al. Interstellar Grains in Primitive Meteorites: Diamond, Silicon Carbide, and Graphite , 1993 .
[27] S. Pizzarello,et al. Molecular and isotopic analyses of the hydroxy acids, dicarboxylic acids, and hydroxicarboxylic acids of the Murchison meteorite. , 1993, Geochimica et cosmochimica acta.
[28] C. Pillinger,et al. The origin of chondritic macromolecular organic matter: A carbon and nitrogen isotope study , 1998, Meteoritics & planetary science.
[29] Mark A. Sephton,et al. δ13C of free and macromolecular aromatic structures in the murchison meteorite , 1998 .
[30] C. Pillinger,et al. C, N, and noble gas isotopes in grain size separates of presolar diamonds from Efremovka. , 1998, Science.
[31] P. Hoppe,et al. Isotopic compositions of C, N, O, Mg, and Si, trace element abundances, and morphologies of single circumstellar graphite grains in four density fractions from the Murchison meteorite , 1995 .
[32] John M. Hayes,et al. Organic constituents of meteorites - A review. , 1967 .
[33] S. Pizzarello,et al. Unusual stable isotope ratios in amino acid and carboxylic acid extracts from the Murchison meteorite , 1987, Nature.
[34] E. Zinner. Presolar material in meteorites: an overview , 1997 .
[35] C. Pillinger,et al. The carbon and oxygen isotopic composition of meteoritic carbonates , 1988 .
[36] Gary R. Huss,et al. Noble gases in presolar diamonds II: Component abundances reflect thermal processing , 1994 .
[37] P. Hoppe,et al. Small SiC grains and a nitride grain of circumstellar origin from the Murchison meteorite: implications for stellar evolution and nucleosynthesis. , 1996, Geochimica et cosmochimica acta.
[38] S. Pizzarello,et al. Isotopic analyses of amino acids from the Murchison meteorite. , 1991, Geochimica et cosmochimica acta.
[39] E. Zinner,et al. Isotopic compositions of different presolar silicon carbide size fractions from the Murchison meteorite , 2000 .
[40] F. Asinger. CHAPTER 2 – THE CATALYTIC HYDROGENATION OF CARBON MONOXIDE OVER COBALT AND IRON CATALYSTS (FISCHER-TROPSCH SYNTHESIS) , 1968 .
[41] M. Lipschutz,et al. Labile Trace Elements in Some Antarctic Carbonaceous Chondrites: Antarctic and Non-Antarctic Meteorite Comparisons , 1989 .
[42] E. Anders,et al. Organic compounds in meteorites and their origins , 1981 .
[43] Gary R. Huss,et al. PRESOLAR DIAMOND, SIC, AND GRAPHITE IN PRIMITIVE CHONDRITES : ABUNDANCES AS A FUNCTION OF METEORITE CLASS AND PETROLOGIC TYPE , 1995 .
[44] E. Anders,et al. Interstellar graphite in meteorites , 1990, Nature.
[45] C. Pillinger,et al. Application of high-sensitivity carbon isotope techniques— a question of blanks , 1992 .
[46] C. Pillinger,et al. Presolar components in the ordinary chondrites , 1990 .
[47] P. Hoppe,et al. Fingerprints of carbon, nitrogen, and silicon isotopes in small interstellar SiC grains from the murchison meteorite , 1993 .
[48] H. McSween. Are carbonaceous chondrites primitive or processed? A review , 1979 .
[49] E. Zinner. STELLAR NUCLEOSYNTHESIS AND THE ISOTOPIC COMPOSITION OF PRESOLAR GRAINS FROM PRIMITIVE METEORITES , 1998 .
[50] S. Pizzarello,et al. Isotopic and molecular analyses of hydrocarbons and monocarboxylic acids of the Murchison meteorite. , 1992, Geochimica et cosmochimica acta.
[51] E. Anders,et al. Interstellar grains in meteorites: I. Isolation of SiC, graphite and diamond; size distributions of SiC and graphite , 1994 .
[52] B. Wopenka,et al. Isotopic, optical, and trace element properties of large single SiC grains from the Murchison meteorite , 1992 .
[53] C. Pillinger,et al. Interstellar Carbon in Meteorites , 1983, Science.
[54] Sumiko Matsuoka,et al. Origin of organic matter in the early solar system—VII. The organic polymer in carbonaceous chondrites , 1977 .
[55] N. Blair,et al. Carbon isotope composition of low molecular weight hydrocarbons and monocarboxylic acids from Murchison meteorite , 1984, Nature.