Light dement geochemistry of the Tagish Lake CI2 chondrite: Comparison with CI1 and CM2 meteorites

We have studied the carbon and nitrogen stable isotope geochemistry of a small pristine sample of the Tagish Lake carbonaceous chondrite by high resolution stepped combustion mass spectrometry, and compared the results with data from the Orgueil (CI1), EET 83334 (CM1) and Murchison (CM2) chondrites. The small chip of Tagish Lake analysed herein had a higher carbon abundance (5.81 wt%) than any other chondrite, and a nitrogen content (~1220 ppm) between that of CI1 and CM2 chondrites. Owing to the heterogeneous nature of the meteorite, the measured carbon abundance might be artificially high: the carbon inventory and whole rock carbon isotopic composition ((δ13C ≈ +24.4‰) of the chip was dominated by δ13C-enriched carbon from the decomposition of carbonates (between 1.29 wt.% and 2.69 wt.%; (δ13C ≈ +67‰ and (18O ≈ +35‰, in the proportions ~ 4:1 dolomite to calcite). In addition to carbonates, Tagish Lake contains organic carbon (~ 2.6 wt.%, (δ13C ≈ -9‰; 1033 ppm N, (δ15N ≈ +77‰), a level intermediate between CI and CM chondrites. Around 2% of the organic material is thermally labile and solvent soluble. A further ~18% of the organic species are liberated by acid hydrolysis. Tagish Lake also contains a complement of presolar grains. It has a higher nanodiamond abundance (~ 3650 - 4330 ppm) than other carbonaceous chondrites, along with ~ 8 ppm silicon carbide. Whilst carbon and nitrogen isotope geochemistry is not diagnostic, the data are consistent with classification of Tagish Lake as a CI2 chondrite.

[1]  G. Wasserburg,et al.  Isotopic systematics of presolar silicon carbide from the Orgueil (CI) chondrite: Implications for solar system formation and stellar nucleosynthesis , 1997 .

[2]  R. Clayton,et al.  Oxygen isotope studies of carbonaceous chondrites , 1999 .

[3]  B. Wopenka,et al.  Interstellar graphite in meteorites: Isotopic compositions and structural properties of single graphite grains from Murchison , 1995 .

[4]  Akai Junji Mineralogical evidence of heating events in Antarctic carbonaceous chondrites, Y-86720 and Y-82162 , 1990 .

[5]  H. McSween,et al.  Minor and trace element concentrations in carbonates of carbonaceous chondrites, and implications for the compositions of coexisting fluids , 1994 .

[6]  Gary R. Huss,et al.  Ubiquitous interstellar diamond and SiC in primitive chondrites: abundances reflect metamorphism , 1990, Nature.

[7]  A. Bischoff,et al.  Carbonates in CI chondrites: clues to parent body evolution. , 1996, Geochimica et cosmochimica acta.

[8]  M. Zolensky,et al.  CM chondrites exhibit the complete petrologic range from type 2 to 1. [Abstract only] , 1994 .

[9]  Young,et al.  Fluid flow in chondritic parent bodies: deciphering the compositions of planetesimals , 1999, Science.

[10]  C. Pillinger,et al.  A carbon and nitrogen isotope study of diamond from primitive chondrites , 1996 .

[11]  C. Pillinger,et al.  Presolar silicon carbide from the Indarch (EH4) meteorite: Comparison with silicon carbide populations from other meteorite classes , 1997 .

[12]  J. Nuth,et al.  Laboratory Studies of Catalysis of CO to Organics on Grain Analogs , 2000 .

[13]  P. Hoppe,et al.  Carbon, nitrogen, magnesium, silicon, and titanium isotopic compositions of single interstellar silicon carbide grains from the Murchison carbonaceous chondrite , 1994 .

[14]  Sherwood Chang,et al.  Organic matter in meteorites: molecular and isotopic analyses of the Murchison meteorite. , 1993 .

[15]  E. Anders,et al.  Carbon Isotope Fractionation in the Fischer-Tropsch Synthesis and in Meteorites , 1970, Science.

[16]  S. Woosley,et al.  Low-Density Graphite Grains and Mixing in Type II Supernovae , 1999 .

[17]  C. Pillinger,et al.  Carbon and Nitrogen Isotopes in Type II Supernova Diamonds , 1995 .

[18]  C. T. Pillinger,et al.  Aromatic moieties in meteoritic macromolecular materials: analyses by hydrous pyrolysis and δ13C of individual compounds , 2000 .

[19]  S. Epstein,et al.  Carbon, hydrogen and nitrogen isotopes in solvent-extractable organic matter from carbonaceous chondrites , 1982 .

[20]  C. Pillinger,et al.  Evidence for Multiple Sources of Diamond from Primitive Chondrites , 1991, Science.

[21]  J. Kerridge Carbon, hydrogen and nitrogen in carbonaceous chondrites: abundances and isotopic compositions in bulk samples. , 1985, Geochimica et cosmochimica acta.

[22]  E. Zinner,et al.  Interstellar grains within interstellar grains , 1991 .

[23]  C. Alexander Presolar SiC in chondrites: How variable and how many sources? , 1993 .

[24]  P G Brown,et al.  The fall, recovery, orbit, and composition of the Tagish Lake meteorite: a new type of carbonaceous chondrite. , 2000, Science.

[25]  C. Johnson,et al.  Carbonate compositions in CM and CI chondrites, and implications for aqueous alteration , 1993 .

[26]  E. Anders,et al.  Interstellar Grains in Primitive Meteorites: Diamond, Silicon Carbide, and Graphite , 1993 .

[27]  S. Pizzarello,et al.  Molecular and isotopic analyses of the hydroxy acids, dicarboxylic acids, and hydroxicarboxylic acids of the Murchison meteorite. , 1993, Geochimica et cosmochimica acta.

[28]  C. Pillinger,et al.  The origin of chondritic macromolecular organic matter: A carbon and nitrogen isotope study , 1998, Meteoritics & planetary science.

[29]  Mark A. Sephton,et al.  δ13C of free and macromolecular aromatic structures in the murchison meteorite , 1998 .

[30]  C. Pillinger,et al.  C, N, and noble gas isotopes in grain size separates of presolar diamonds from Efremovka. , 1998, Science.

[31]  P. Hoppe,et al.  Isotopic compositions of C, N, O, Mg, and Si, trace element abundances, and morphologies of single circumstellar graphite grains in four density fractions from the Murchison meteorite , 1995 .

[32]  John M. Hayes,et al.  Organic constituents of meteorites - A review. , 1967 .

[33]  S. Pizzarello,et al.  Unusual stable isotope ratios in amino acid and carboxylic acid extracts from the Murchison meteorite , 1987, Nature.

[34]  E. Zinner Presolar material in meteorites: an overview , 1997 .

[35]  C. Pillinger,et al.  The carbon and oxygen isotopic composition of meteoritic carbonates , 1988 .

[36]  Gary R. Huss,et al.  Noble gases in presolar diamonds II: Component abundances reflect thermal processing , 1994 .

[37]  P. Hoppe,et al.  Small SiC grains and a nitride grain of circumstellar origin from the Murchison meteorite: implications for stellar evolution and nucleosynthesis. , 1996, Geochimica et cosmochimica acta.

[38]  S. Pizzarello,et al.  Isotopic analyses of amino acids from the Murchison meteorite. , 1991, Geochimica et cosmochimica acta.

[39]  E. Zinner,et al.  Isotopic compositions of different presolar silicon carbide size fractions from the Murchison meteorite , 2000 .

[40]  F. Asinger CHAPTER 2 – THE CATALYTIC HYDROGENATION OF CARBON MONOXIDE OVER COBALT AND IRON CATALYSTS (FISCHER-TROPSCH SYNTHESIS) , 1968 .

[41]  M. Lipschutz,et al.  Labile Trace Elements in Some Antarctic Carbonaceous Chondrites: Antarctic and Non-Antarctic Meteorite Comparisons , 1989 .

[42]  E. Anders,et al.  Organic compounds in meteorites and their origins , 1981 .

[43]  Gary R. Huss,et al.  PRESOLAR DIAMOND, SIC, AND GRAPHITE IN PRIMITIVE CHONDRITES : ABUNDANCES AS A FUNCTION OF METEORITE CLASS AND PETROLOGIC TYPE , 1995 .

[44]  E. Anders,et al.  Interstellar graphite in meteorites , 1990, Nature.

[45]  C. Pillinger,et al.  Application of high-sensitivity carbon isotope techniques— a question of blanks , 1992 .

[46]  C. Pillinger,et al.  Presolar components in the ordinary chondrites , 1990 .

[47]  P. Hoppe,et al.  Fingerprints of carbon, nitrogen, and silicon isotopes in small interstellar SiC grains from the murchison meteorite , 1993 .

[48]  H. McSween Are carbonaceous chondrites primitive or processed? A review , 1979 .

[49]  E. Zinner STELLAR NUCLEOSYNTHESIS AND THE ISOTOPIC COMPOSITION OF PRESOLAR GRAINS FROM PRIMITIVE METEORITES , 1998 .

[50]  S. Pizzarello,et al.  Isotopic and molecular analyses of hydrocarbons and monocarboxylic acids of the Murchison meteorite. , 1992, Geochimica et cosmochimica acta.

[51]  E. Anders,et al.  Interstellar grains in meteorites: I. Isolation of SiC, graphite and diamond; size distributions of SiC and graphite , 1994 .

[52]  B. Wopenka,et al.  Isotopic, optical, and trace element properties of large single SiC grains from the Murchison meteorite , 1992 .

[53]  C. Pillinger,et al.  Interstellar Carbon in Meteorites , 1983, Science.

[54]  Sumiko Matsuoka,et al.  Origin of organic matter in the early solar system—VII. The organic polymer in carbonaceous chondrites , 1977 .

[55]  N. Blair,et al.  Carbon isotope composition of low molecular weight hydrocarbons and monocarboxylic acids from Murchison meteorite , 1984, Nature.