The Montagovian Generative Lexicon Λ T y n : a Type Theoretical Framework for Natural Language Semantics

We present a framework, named the Montagovian generative lexicon, for computing the semantics of natural language sentences, expressed in many-sorted higher order logic. Word meaning is described by several lambda terms of second order lambda calculus (Girard’s system F): the principal lambda term encodes the argument structure, while the other lambda terms implement meaning transfers. The base types include a type for propositions and many types for sorts of a many-sorted logic for expressing restriction of selection. This framework is able to integrate a proper treatment of lexical phenomena into a Montagovian compositional semantics, like the (im)possible arguments of a predicate, and the adaptation of a word meaning to some contexts. Among these adaptations of a word meaning to contexts, ontological inclusions are handled by coercive subtyping, an extension of system F introduced in the present paper. The benefits of this framework for lexical semantics and pragmatics are illustrated on meaning transfers and coercions, on possible and impossible copredication over different senses, on deverbal ambiguities, and on “fictive motion”. Next we show that the compositional treatment of determiners, quantifiers, plurals, and other semantic phenomena is richer in our framework. We then conclude with the linguistic, logical and computational perspectives opened by the Montagovian generative lexicon. 1998 ACM Subject Classification F.4.1 Mathematical Logic, I.2.7 Natural Language Processing, I.2.4 Knowledge Representation Formalisms and Methods, D.1.1 Applicative (Functional) Programming

[1]  David Hilbert Die logischen Grundlagen der Mathematik , 1922 .

[2]  Wilhelm Ackermann,et al.  Begründung des „tertium non datur” mittels der Hilbertschen Theorie der Widerspruchsfreiheit , 1925 .

[3]  Paul Bernays,et al.  Grundlagen der Mathematik. Band I , 1939 .

[4]  Günter Asser,et al.  Theorie der Logischen Auswahlfunktionen , 1957 .

[5]  J. Girard Une Extension De ĽInterpretation De Gödel a ĽAnalyse, Et Son Application a ĽElimination Des Coupures Dans ĽAnalyse Et La Theorie Des Types , 1971 .

[6]  A. Leisenring Mathematical logic and Hilbert's ε-symbol , 1971 .

[7]  Richard Montague,et al.  ENGLISH AS A FORMAL LANGUAGE , 1975 .

[8]  T. B. Flannagan,et al.  On an extension of Hilbert's second ε-theorem , 1975, Journal of Symbolic Logic.

[9]  Linda Wessels Cut Elimination in a Gentzen-Style ϵ-Calculus Without Identity , 1977, Math. Log. Q..

[10]  Reinhard Muskens,et al.  Anaphora and the Logic of Change , 1990, JELIA.

[11]  James Pustejovsky,et al.  The Generative Lexicon , 1995, CL.

[12]  Luca Cardelli,et al.  An Extension of System F with Subtyping , 1991, TACS.

[13]  Geoffrey Nunberg,et al.  Transfers of Meaning , 1995, J. Semant..

[14]  Klaus von Heusinger,et al.  The Epsilon Operator and E-Type Pronouns , 1995 .

[15]  I. I. N. Kamp Combining Montague Semantics and Discourse Representation , 1996 .

[16]  Klaus von Heusinger,et al.  Definite Descriptions and Choice Functions * Final version appeared , 1999 .

[17]  Giuseppe Longo,et al.  Coherence and transitivity of subtyping as entailment , 2000, J. Log. Comput..

[18]  Zhaohui Luo,et al.  Coercion completion and conservativity in coercive subtyping , 2001, Ann. Pure Appl. Log..

[19]  K. R. Blutner,et al.  Lexical semantics and pragmatics , 2002 .

[20]  David Chemouil,et al.  Some Algebraic Structures in Lambda-Calculus with Inductive Types , 2003, TYPES.

[21]  Sven Lauer A Comparative Study Of Current Theories Of Polysemy In Formal Semantics , 2004 .

[22]  K. Heusinger Choice Functions and the Anaphoric Semantics of Definite NPs , 2004 .

[23]  Nissim Francez,et al.  Categorial Grammar with Ontology-refined Types , 2004 .

[24]  Yves Lafont,et al.  Soft linear logic and polynomial time , 2004, Theor. Comput. Sci..

[25]  Georg Moser,et al.  The Epsilon Calculus and Herbrand Complexity , 2006, Stud Logica.

[26]  Luis von Ahn Games with a Purpose , 2006, Computer.

[27]  Stanley Peters,et al.  Quantifiers in language and logic , 2006 .

[28]  Philipp Cimiano,et al.  Automatic Acquisition of Ranked Qualia Structures from the Web , 2007, ACL.

[29]  Robin Cooper Göteborg Copredication , dynamic generalized quantification and lexical innovation by coercion ∗ , 2007 .

[30]  Nicholas Asher,et al.  A Type Driven Theory of Predication with Complex Types , 2008, Fundam. Informaticae.

[31]  Barbara H. Partee,et al.  Noun Phrase Interpretation and Type‐shifting Principles , 2008 .

[32]  Grigori Mints,et al.  Cut elimination for a simple formulation of epsilon calculus , 2008, Ann. Pure Appl. Log..

[33]  Luke S. Zettlemoyer,et al.  Learning Context-Dependent Mappings from Sentences to Logical Form , 2009, ACL.

[34]  Jan van Eijck,et al.  Computational Semantics with Functional Programming , 2010 .

[35]  Richard Moot,et al.  Wide-Coverage French Syntax and Semantics using Grail , 2010, JEPTALNRECITAL.

[36]  Christian Bassac,et al.  Towards a Type-Theoretical Account of Lexical Semantics , 2010, J. Log. Lang. Inf..

[37]  Richard Moot Semi-automated Extraction of a Wide-Coverage Type-Logical Grammar for French , 2010 .

[38]  Mathieu Lafourcade,et al.  Computing trees of named word usages from a crowdsourced lexical network , 2010, IMCSIT.

[39]  Richard Moot,et al.  Extraction of Type-Logical Supertags from the Spoken Dutch Corpus , 2010 .

[40]  Zhaohui Luo Contextual Analysis of Word Meanings in Type-Theoretical Semantics , 2011, LACL.

[41]  Alain Lecomte,et al.  Figures of dialogue: a view from Ludics , 2011, Synthese.

[42]  Richard Moot,et al.  Un calcul de termes typés pour la pragmatique lexicale: chemins et voyageurs fictifs dans un corpus de récits de voyage (A calculation of typed terms for lexical pragmatics: paths and fictional travellers in a travel stories corpus) , 2011, JEPTALNRECITAL.

[43]  Robin Cooper,et al.  Copredication, Quantification and Frames , 2011, LACL.

[44]  C. Retoré,et al.  Second order lambda calculus for meaning assembly: on the logical syntax of plurals , 2011 .

[45]  Nicholas Asher,et al.  Lexical Meaning in Context - A Web of Words , 2011 .

[46]  Michele Abrusci,et al.  Quantification in ordinary language , 2011, 1107.1883.

[47]  J. Girard The Blind Spot: Lectures on Logic , 2011 .

[48]  Mark Steedman,et al.  Taking Scope - The Natural Semantics of Quantifiers , 2011 .

[49]  Richard Moot,et al.  A discursive analysis of itineraries in an historical and regional corpus of travels , 2011 .

[50]  Peter A. Flach,et al.  Machine Learning - The Art and Science of Algorithms that Make Sense of Data , 2012 .

[51]  Richard Moot,et al.  The Logic of Categorial Grammars , 2012, Lecture Notes in Computer Science.

[52]  Zhaohui Luo,et al.  Common Nouns as Types , 2012, LACL.

[53]  Zhaohui Luo,et al.  Dot-types and Their Implementation , 2012, LACL.

[54]  Zhaohui Luo,et al.  An Account of Natural Language Coordination in Type Theory with Coercive Subtyping , 2012, CSLP.

[55]  Christian Retoré,et al.  Variable types for meaning assembly: a logical syntax for generic noun phrases introduced by most , 2012, ArXiv.

[56]  Richard Moot,et al.  Traitement automatique d’un corpus de récits de voyages pyrénéens : Analyse syntaxique, sémantique et pragmatique dans le cadre de la théorie des types , 2012 .

[57]  Richard Moot,et al.  Traitement automatique sur corpus de récits de voyages pyrénéens : Une analyse syntaxique, sémantique et temporelle (Processing of a Pyrenees Travel Novels Corpus : a Syntactical, Semantical and Temporal Analysis.) [in French] , 2012, JEP/TALN/RECITAL.

[58]  Denis Béchet,et al.  Logical Aspects of Computational Linguistics , 2012, Lecture Notes in Computer Science.

[59]  Christian Retoré,et al.  Advances in the Logical Representation of Lexical Semantics , 2013, ArXiv.

[60]  Zhaohui Luo,et al.  Coercive subtyping: Theory and implementation , 2013, Inf. Comput..

[61]  Zhaohui Luo,et al.  Adjectives in a Modern Type-Theoretical Setting , 2013, FG.

[62]  Christian Retoré A natural framework for natural language semantics: many sorted logic and Hilbert operators in type theory , 2013 .

[63]  Christian Retoré,et al.  Semantic Types, Lexical Sorts and Classifiers , 2013, ArXiv.

[64]  Nicholas Asher,et al.  Formalization ov Coercions in Lexical Semantics , 2013 .

[65]  Christian Retoré,et al.  On the semantics of determiners in a rich type-theoretical framework (Sémantique des déterminants dans un cadre richement typé) [in French] , 2013, JEP/TALN/RECITAL.

[66]  Richard Moot,et al.  Plurals: individuals and sets in a richly typed semantics , 2014, ArXiv.