Computational Schemes for Subresultant Chains

Subresultants are one of the most fundamental tools in computer algebra. They are at the core of numerous algorithms including, but not limited to, polynomial GCD computations, polynomial system solving, and symbolic integration. When the subresultant chain of two polynomials is involved in a client procedure, not all polynomials of the chain, or not all coefficients of a given subresultant, may be needed. Based on that observation, this paper discusses different practical schemes, and their implementation, for efficiently computing subresultants. Extensive experimentation supports our findings.

[1]  Arnold Schönhage,et al.  Schnelle Berechnung von Kettenbruchentwicklungen , 1971, Acta Informatica.

[2]  Marc Moreno Maza,et al.  On the parallelization of triangular decompositions , 2020, ISSAC.

[3]  Dominique Duval,et al.  About a New Method for Computing in Algebraic Number Fields , 1985, European Conference on Computer Algebra.

[4]  Sartaj Sahni,et al.  Analysis of algorithms , 2000, Random Struct. Algorithms.

[5]  D. H. Lehmer Euclid's Algorithm for Large Numbers , 1938 .

[6]  Joachim von zur Gathen,et al.  Modern Computer Algebra by Joachim von zur Gathen , 2013 .

[7]  Richard Zippel,et al.  Probabilistic algorithms for sparse polynomials , 1979, EUROSAM.

[8]  Marc Moreno Maza,et al.  Big Prime Field FFT on Multi-core Processors , 2019, ISSAC.

[9]  R. Gregory Taylor,et al.  Modern computer algebra , 2002, SIGA.

[10]  Lionel Ducos Optimizations of the subresultant algorithm , 2000 .

[11]  Grégoire Lecerf On the complexity of the Lickteig-Roy subresultant algorithm , 2019, J. Symb. Comput..

[12]  Thomas Lickteig,et al.  Semi-algebraic Complexity of Quotients and Sign Determination of Remainders , 1996, J. Complex..

[13]  Chee Yap,et al.  A Unified Approach to HGCD Algorithms for polynomials and integers , 1990 .

[14]  M'hammed El Kahoui,et al.  An elementary approach to subresultants theory , 2003, J. Symb. Comput..

[15]  Tommy Färnqvist Number Theory Meets Cache Locality – Efficient Implementation of a Small Prime FFT for the GNU Multiple Precision Arithmetic Library , 2005 .

[16]  Marc Moreno Maza,et al.  The RegularChains library in MAPLE , 2005, SIGS.

[17]  P. L. Montgomery Modular multiplication without trial division , 1985 .

[18]  Changbo Chen,et al.  Algorithms for computing triangular decomposition of polynomial systems , 2012, J. Symb. Comput..

[19]  Michael B. Monagan,et al.  Factoring Multivariate Polynomials with Many Factors and Huge Coefficients , 2018, CASC.

[20]  S. Covanov,et al.  Putting Fürer Algorithm into Practice , 2014 .

[21]  Marc Moreno Maza,et al.  Implementation techniques for fast polynomial arithmetic in a high-level programming environment , 2006, ISSAC '06.

[22]  Maria Grazia Marinari,et al.  The shape of the Shape Lemma , 1994, ISSAC '94.

[23]  Lionel Ducos Algorithme de Bareiss, algorithme des sous-résultants , 1996, RAIRO Theor. Informatics Appl..

[24]  Michael B. Monagan,et al.  Probabilistic algorithms for computing resultants , 2005, ISSAC.

[25]  Daniel Reischert Asymptotically fast computation of subresultants , 1997, ISSAC.