Investigations on the C-Rate and Temperature Dependence of Manganese Dissolution/Deposition in LiMn2O4/Li4Ti5O12 Lithium Ion Batteries

[1]  A. Sastry,et al.  Degradation of the solid electrolyte interphase induced by the deposition of manganese ions , 2015 .

[2]  M. Winter,et al.  Ion chromatography electrospray ionization mass spectrometry method development and investigation of lithium hexafluorophosphate-based organic electrolytes and their thermal decomposition products. , 2014, Journal of chromatography. A.

[3]  Xingcheng Xiao,et al.  Unraveling manganese dissolution/deposition mechanisms on the negative electrode in lithium ion batteries. , 2014, Physical chemistry chemical physics : PCCP.

[4]  M. Balasubramanian,et al.  Oxidation state of cross-over manganese species on the graphite electrode of lithium-ion cells. , 2014, Physical chemistry chemical physics : PCCP.

[5]  M. Winter,et al.  Investigation of thermal aging and hydrolysis mechanisms in commercial lithium ion battery electrolyte , 2013 .

[6]  Jun Lu,et al.  Mn(II) deposition on anodes and its effects on capacity fade in spinel lithium manganate–carbon systems , 2013, Nature Communications.

[7]  A. Mauger,et al.  Review of 5-V electrodes for Li-ion batteries: status and trends , 2013, Ionics.

[8]  S. Nowak,et al.  Rapid characterization of lithium ion battery electrolytes and thermal aging products by low-temperature plasma ambient ionization high-resolution mass spectrometry. , 2013, Analytical chemistry.

[9]  Xiangyun Song,et al.  Correlation between dissolution behavior and electrochemical cycling performance for LiNi1/3Co1/3Mn1/3O2-based cells , 2012 .

[10]  M. Winter,et al.  Ion chromatographic determination of hydrolysis products of hexafluorophosphate salts in aqueous solution. , 2012, Analytica chimica acta.

[11]  Rita Baddour-Hadjean,et al.  Raman microspectrometry applied to the study of electrode materials for lithium batteries. , 2010, Chemical reviews.

[12]  Daniel P. Abraham,et al.  Evidence of Transition-Metal Accumulation on Aged Graphite Anodes by SIMS , 2008 .

[13]  Yang-Kook Sun,et al.  On the Safety of the Li4Ti5O12 ∕ LiMn2O4 Lithium-Ion Battery System , 2007 .

[14]  M. Wohlfahrt‐Mehrens,et al.  Ageing mechanisms in lithium-ion batteries , 2005 .

[15]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[16]  Kyung Yoon Chung,et al.  Investigations into capacity fading as a result of a Jahn–Teller distortion in 4 V LiMn2O4 thin film electrodes , 2004 .

[17]  Ilias Belharouak,et al.  Improved lithium manganese oxide spinel/graphite Li-ion cells for high-power applications , 2004 .

[18]  C. Julien,et al.  Lattice vibrations of manganese oxides. Part I. Periodic structures. , 2004, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[19]  R. Samigullina,et al.  Structure, ionic conduction, and phase transformations in lithium titanate Li4Ti5O12 , 2003 .

[20]  K. Striebel,et al.  Study of Mn dissolution from LiMn{sub 2}O{sub 4} spinel electrodes using rotating ring-disk collection experiments , 2003 .

[21]  Glenn G. Amatucci,et al.  Optimization of Insertion Compounds Such as LiMn2 O 4 for Li-Ion Batteries , 2002 .

[22]  Y. Nishi Lithium ion secondary batteries; past 10 years and the future , 2001 .

[23]  Michael M. Thackeray,et al.  Structural Changes of LiMn2 O 4 Spinel Electrodes during Electrochemical Cycling , 1999 .

[24]  J. Tarascon,et al.  Mechanism for Limited 55°C Storage Performance of Li1.05Mn1.95 O 4 Electrodes , 1999 .

[25]  Yunhong Zhou,et al.  Capacity Fading on Cycling of 4 V Li / LiMn2 O 4 Cells , 1997 .

[26]  V. Manev,et al.  Rechargeable lithium battery with spinel-related λ-MnO2 III. Scaling-up problems associated with LiMn2O4 synthesis , 1995 .

[27]  Michael M. Thackeray,et al.  Improved capacity retention in rechargeable 4 V lithium/lithium- manganese oxide (spinel) cells , 1994 .

[28]  Dominique Guyomard,et al.  The Li1+xMn2O4/C rocking-chair system: a review , 1993 .

[29]  Philippe M. Fauchet,et al.  The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors , 1986 .

[30]  John B. Goodenough,et al.  Electrochemical extraction of lithium from LiMn2O4 , 1984 .

[31]  B. Scharifker,et al.  Theoretical and experimental studies of multiple nucleation , 1983 .

[32]  John B. Goodenough,et al.  Lithium insertion into manganese spinels , 1983 .

[33]  Haegyeom Kim,et al.  Understanding the Degradation Mechanisms of LiNi0.5Co0.2Mn0.3O2 Cathode Material in Lithium Ion Batteries , 2014 .

[34]  G. Yushin,et al.  Effects of Dissolved Transition Metals on the Electrochemical Performance and SEI Growth in Lithium-Ion Batteries , 2014 .

[35]  C. Delacourt,et al.  Effect of Manganese Contamination on the Solid-Electrolyte-Interphase Properties in Li-Ion Batteries , 2013 .

[36]  Long Cai,et al.  Capacity Fade Model for Spinel LiMn2O4 Electrode , 2013 .

[37]  Robert Kostecki,et al.  The mechanism of HF formation in LiPF6-based organic carbonate electrolytes , 2012 .

[38]  Sangjin Park,et al.  Re-Deposition of Manganese Species on Spinel LiMn2O4 Electrode after Mn Dissolution , 2012 .

[39]  Y. Shao-horn,et al.  Structural Fatigue in Spinel Electrodes in High Voltage ( 4 V ) Li / Li x Mn2 O 4 Cells , 1999 .

[40]  Michael M. Thackeray,et al.  Manganese oxides for lithium batteries , 1997 .