Flow-through catalytic membrane reactors—Principles and applications

This paper reviews and classifies publications dealing with catalytic membrane reactors in flow-through mode. In contrast to other membrane reactor concepts, the membrane is operated in dead-end mode and no separation task is performed. As no permselectivity is required, catalytically active porous, mostly ceramic, membranes are applied. The task of the membrane is to provide for intensive contact between reactants and catalyst, combined with a short contact time and a narrow residence time distribution. The applications are categorized in three groups: Complete Conversion Integral Reactors, Selective Integral Reactors and Selective Differential Reactors.

[1]  D. Fino,et al.  Inorganic membrane reactors , 1998 .

[2]  V. Parmon,et al.  Fischer–Tropsch synthesis using plug-through contactor membranes based on permeable composite monoliths. Selectivity control by porous structure parameters and membrane geometry , 2005 .

[3]  J. Armor Membrane catalysis: Where is it now, what needs to be done? , 1995 .

[4]  M. Menéndez,et al.  Combustion of volatile organic compounds over mixed-regime catalytic membranes , 1999 .

[5]  A. Seidel-Morgenstern,et al.  Catalytic Membrane Reactors for Partial Oxidation Using Perovskite Hollow Fiber Membranes and for Partial Hydrogenation Using a Catalytic Membrane Contactor , 2007 .

[6]  Vito Specchia,et al.  Catalytic inorganic membrane reactors: present experience and future opportunities , 1994 .

[7]  A. Burggraaf,et al.  Reactions of methanol over catalytically active alumina membranes , 1991 .

[8]  R. Dittmeyer,et al.  A Review of Catalytic Membrane Layers for Gas/Liquid Reactions , 2004 .

[9]  Kamalesh K. Sirkar,et al.  Membrane in a reactor: A functional perspective , 1999 .

[10]  A. Dixon Innovations in Catalytic Inorganic membrane reactors , 1999 .

[11]  A. Bommarius,et al.  The membrane reactor in the fine chemicals industry , 2001 .

[12]  W. R. Moser,et al.  OXIDATIVE COUPLING OF METHANE USING INORGANIC MEMBRANE REACTORS , 1998 .

[13]  G. Saracco,et al.  Catalytic Ceramic Filters for Flue Gas Cleaning. 1. Preparation and Characterization , 1995 .

[14]  David Farrusseng,et al.  Porous ceramic membranes for catalytic reactors — overview and new ideas , 2001 .

[15]  Geert Versteeg,et al.  High-temperature membrane reactors: potential and problems , 1999 .

[16]  T. Tsuru,et al.  A photocatalytic membrane reactor for gas-phase reactions using porous titanium oxide membranes , 2003 .

[17]  Weishen Yang,et al.  AgBiVMo oxide catalytic membrane for selective oxidation of propane to acrolein , 2003 .

[18]  A. Schmidt,et al.  α‐methylstyrene hydrogenation in a flow‐through membrane reactor , 2006 .

[20]  L. Broadbelt,et al.  Transmission probabilities and particle-wall contact for Knudsen diffusion in pores of variable diameter , 2007 .

[21]  W. Maier,et al.  Selective Hydrogenation Reactions with a Microporous Membrane Catalyst, Prepared by Sol–Gel Dip Coating☆ , 1998 .

[22]  U. Kragl,et al.  The development of new methods for the recycling of chiral catalysts. , 2001, Trends in biotechnology.

[23]  Andreas Seidel-Morgenstern,et al.  Comparing porous and dense membranes for the application in membrane reactors , 1999 .

[24]  A. Schmidt,et al.  Partial hydrogenation of sunflower oil in a membrane reactor , 2007 .

[25]  A. Varma,et al.  Ethylene epoxidation in a catalytic packed-bed membrane reactor , 1998 .

[26]  L Giorno,et al.  Biocatalytic membrane reactors: applications and perspectives. , 2000, Trends in biotechnology.

[27]  K Rajalakshmi,et al.  Structured Catalysts and Reactors , 2010, Focus on Catalysts.

[28]  Frank Lipnizki,et al.  Pervaporation-based hybrid process: a review of process design, applications and economics , 1999 .

[29]  Peter J.T. Verheijen,et al.  Scaling-up Multiphase Monolith Reactors: Linking Residence Time Distribution and Feed Maldistribution , 2005 .

[30]  L. Curtiss,et al.  Novel, uniform nanostructured catalytic membranes , 2006 .

[31]  L. Nosova,et al.  Catalytic membrane in reduction of aqueous nitrates: operational principles and catalytic performance , 2000 .

[32]  Marie-Pierre Belleville,et al.  Progress in enzymatic membrane reactors ¿ a review , 2004 .

[33]  A. Dixon Recent Research in Catalytic Inorganic Membrane Reactors , 2003 .

[34]  J. Falconer,et al.  Improved methanol yield from methane oxidation in a non-isothermal reactor , 1996 .

[35]  J. Domínguez,et al.  Olefins catalytic oligomerization on new composites of beta-zeolite films supported on α-Al2O3 membranes , 2003 .

[36]  M. Menéndez,et al.  The Knudsen-diffusion catalytic membrane reactor: An efficient contactor for the combustion of volatile organic compounds , 1996 .

[37]  R. Dittmeyer,et al.  Porous, catalytically active ceramic membranes for gas-liquid reactions: a comparison between catalytic diffuser and forced through flow concept , 2003 .

[38]  K. Peinemann,et al.  Nitrate removal of drinking water by means of catalytically active membranes , 1998 .

[39]  F. Keil,et al.  Application of a forced-flow catalytic membrane reactor for the dimerisation of isobutene , 2004 .

[40]  Roland Dittmeyer,et al.  Membrane reactors for hydrogenation and dehydrogenation processes based on supported palladium , 2001 .

[41]  David Wong,et al.  Bubble Behaviour in Three Phase Capillary Microreactors , 2003 .

[42]  C. Chan,et al.  Performance of a membrane-catalyst for photocatalytic oxidation of volatile organic compounds , 2003 .

[43]  C. Lambert,et al.  Activity and selectivity of a $${\text{Pd/}}\gamma {\text{ - Al}}_{\text{2}} {\text{O}}_{\text{3}}$$ catalytic membrane in the partial hydrogenation reactions of acetylene and 1,3-butadiene , 1999 .

[44]  V. Parmon,et al.  Performance of a catalytic membrane reactor for the Fischer–Tropsch synthesis , 2005 .

[45]  A. Schmidt,et al.  A pore‐flow‐through membrane reactor for partial hydrogenation of 1,5‐cyclooctadiene , 2008 .

[46]  M. Vincent,et al.  Selective hydrogenation of acetylene through a short contact time reactor , 2002 .

[47]  G. Bengtson,et al.  Development of catalytically reactive porous membranes for the selective hydrogenation of sunflower oil , 2006 .

[48]  A. Seidel‐Morgenstern,et al.  Membranen als Katalysatorträger , 2005 .

[49]  G. Bengtson,et al.  Catalytic Polymer Membranes for high Temperature Hydrogenation of viscous Liquids , 2006 .

[50]  A. Schmidt,et al.  Selectivity of partial hydrogenation reactions performed in a pore-through-flow catalytic membrane reactor , 2005 .

[51]  P. Simonov,et al.  Water denitrification over catalytic membranes: hydrogen spillover and catalytic activity of macroporous membranes loaded with Pd and Cu , 2003 .

[52]  R. Haidar,et al.  Hydrogenation of Propyne in Palladium-Containing Polyacrylic Acid Membranes and Its Characterization , 2005 .

[53]  A. Schmidt A pore flow through membrane reactor for selective hydrogenation reactions , 2007 .

[54]  J. Birrell,et al.  Mesoporous catalytic membranes: Synthetic control of pore size and wall composition , 2005 .

[55]  L. Broadbelt,et al.  Multiscale modeling of transport and residence times in nanostructured membranes , 2006 .

[56]  G. Saracco,et al.  Catalytic Ceramic Filters for Flue Gas Cleaning. 2. Catalytic Performance and Modeling Thereof , 1995 .