Simulated microstructure-sensitive extreme value probabilities for high cycle fatigue of duplex Ti–6Al–4V

Abstract A newly developed microstructure-sensitive extreme value probabilistic framework to characterize the performance/variability for damage evolution processes is exercised to compare the driving forces for fatigue crack formation (nucleation and early growth) at room temperature for four different microstructure variants of a duplex Ti–6Al–4V alloy. The aforementioned probabilistic framework links certain extreme value fatigue response parameters with microstructure attributes at fatigue critical sites through the use of marked correlation functions. By applying this framework to study the driving forces for fatigue crack formation in these microstructure variants of Ti–6Al–4V, these microstructures can be ranked in terms of relative high cycle fatigue (HCF) performance and the correlated microstructure attributes that have the most influence on the predicted fatigue response can be identified. Nonlocal fatigue indicator parameters (FIPs) based on the cyclic plastic strain averaged over domains on the length scale of the microstructure attributes (e.g., grains, phases) are used to estimate the driving force(s) for fatigue crack formation at the grain scale. By simulating multiple statistical volume elements (SVEs) using crystal plasticity constitutive relations, extreme value distributions of the predicted driving forces for fatigue crack formation are estimated using these FIPs. This strategy of using multiple SVEs contrasts with simulation based on a single representative volume element (RVE), which is often untenably large when considering extreme value responses. The simulations demonstrate that microstructures with smaller relative primary α grain sizes and lower volume fractions of the primary α grains tend to exhibit less variability and smaller magnitudes of the driving forces for fatigue crack formation. The extreme value FIPs are predicted to most likely occur at clusters of primary α grains oriented for easy basal slip. Additionally, surrounding grains/phases with soft orientation shed load to less favorably oriented primary α grains, producing extreme value FIPs.

[1]  Asim Tewari,et al.  Nearest neighbor distances in uniaxial fiber composites , 2004 .

[2]  C. Sullivan,et al.  LOW-CYCLE FATIGUE CRACK INITIATION IN Ti--6Al--4V. , 1969 .

[3]  D. McDowell,et al.  Microstructure-sensitive extreme value probabilities for high cycle fatigue of Ni-base superalloy IN100 , 2010 .

[4]  Asim Tewari,et al.  Nearest neighbor distances in uniform–random poly-dispersed microstructures , 2005 .

[5]  Daniel B. Miracle,et al.  Quantitative characterization of spatial clustering in three-dimensional microstructures using two-point correlation functions , 2004 .

[6]  M. Liao Probabilistic modeling of fatigue related microstructural parameters in aluminum alloys , 2009 .

[7]  F. Dunne,et al.  On the mechanisms of fatigue facet nucleation in titanium alloys , 2008 .

[8]  J. Mendez,et al.  Slip and fatigue crack formation processes in an α/β titanium alloy in relation to crystallographic texture on different scales , 2008 .

[9]  Vratislav Horálek,et al.  ASTM grain-size model and related random tessellation , 1990 .

[10]  A. Saxena,et al.  Low cycle fatigue in rene 88DT at 650 °C: Crack nucleation mechanisms and modeling , 2006 .

[11]  W. Evans,et al.  The effects of texture in titanium alloys for engineering components under fatigue , 2001 .

[12]  J. M. Larsen,et al.  Microstructural Influences on Very-High-Cycle Fatigue-Crack Initiation in Ti-6246 , 2008 .

[13]  Vikas Hasija,et al.  Deformation and creep modeling in polycrystalline Ti–6Al alloys , 2003 .

[14]  A. Wilkinson,et al.  Experimental and computational studies of low cycle fatigue crack nucleation in a polycrystal , 2007 .

[15]  D. McDowell,et al.  Microstructure-based crystal plasticity modeling of cyclic deformation of Ti–6Al–4V , 2007 .

[16]  M. Bache A review of dwell sensitive fatigue in titanium alloys: the role of microstructure, texture and operating conditions , 2003 .

[17]  Somnath Ghosh,et al.  A size-dependent crystal plasticity finite-element model for creep and load shedding in polycrystalline titanium alloys , 2007 .

[18]  Mojia Huang,et al.  The n-point orientation correlation function and its application , 2005 .

[19]  Salvatore Torquato,et al.  Microstructure of two-phase random media.III: The n-point matrix probability functions for fully penetrable spheres , 1983 .

[20]  A. Rollett,et al.  3D reconstruction of microstructure in a commercial purity aluminum , 2006 .

[21]  A. Morawiec Misorientation‐Angle Distribution of Randomly Oriented Symmetric Objects , 1995 .

[22]  T. C. Lindley,et al.  The effect of grain orientation on fracture morphology during high-cycle fatigue of Ti-6Al-4V , 2009 .

[23]  S. Torquato,et al.  Random Heterogeneous Materials: Microstructure and Macroscopic Properties , 2005 .

[24]  J. M. Larsen,et al.  A new paradigm of fatigue variability behavior and implications for life prediction , 2007 .

[25]  J. Angus Extreme Value Theory in Engineering , 1990 .

[26]  H. Piehler,et al.  On the nature and crystallographic orientation of subsurface cracks in high cycle fatigue of Ti-6Al-4V , 1993 .

[27]  David L. McDowell,et al.  Crystal plasticity modeling of slip activity in Ti–6Al–4V under high cycle fatigue loading , 2009 .

[28]  S. Pommier,et al.  Local texture and fatigue crack initiation in a Ti‐6Al‐4V titanium alloy , 2002 .

[29]  David L. McDowell,et al.  3D modeling of subsurface fatigue crack nucleation potency of primary inclusions in heat treated and shot peened martensitic gear steels , 2009 .

[30]  D. McDowell,et al.  A three-dimensional crystal plasticity model for duplex Ti–6Al–4V , 2007 .

[31]  A. Rosenberger,et al.  Crystallographic Initiation of Nickel-Base Superalloy IN100 at RT and 538C Under Low Cycle Fatigue Conditions , 2004 .

[32]  D. McDowell,et al.  A δJ-BASED APPROACH TO BIAXIAL FATIGUE , 1992 .

[33]  Asim Tewari,et al.  Nearest-neighbor distances between particles of finite size in three-dimensional uniform random microstructures , 2004 .

[34]  Computer simulations of “realistic” partially anisotropic microstructures statistically similar to real microstructures , 2009 .

[35]  Y. Mahajan,et al.  Low Cycle Fatigue Behavior of Ti-6AI-2Sn-4Zr-6Mo: Part I. The Role of Microstructure in Low Cycle Crack Nucleation and Early Crack Growth , 1982 .

[36]  Anthony C. Davison,et al.  Statistics of Extremes , 2015, International Encyclopedia of Statistical Science.

[37]  J. D. T. Oliveira,et al.  The Asymptotic Theory of Extreme Order Statistics , 1979 .

[38]  A. Gokhale,et al.  Constraints on microstructural two-point correlation functions , 2005 .

[39]  Stefano Beretta,et al.  STATISTICAL ANALYSIS OF DEFECTS FOR FATIGUE STRENGTH PREDICTION AND QUALITY CONTROL OF MATERIALS , 1998 .

[40]  David L. McDowell,et al.  Estimating fatigue sensitivity to polycrystalline Ni‐base superalloy microstructures using a computational approach , 2007 .

[41]  F. Dunne,et al.  Lengthscale-dependent, elastically anisotropic, physically-based hcp crystal plasticity: Application to cold-dwell fatigue in Ti alloys , 2007 .

[42]  N. J. Pagano,et al.  Statistically Equivalent Representative Volume Elements for Unidirectional Composite Microstructures: Part I - Without Damage , 2006 .

[43]  Helen V. Atkinson,et al.  Characterization of inclusions in clean steels: a review including the statistics of extremes methods , 2003 .

[44]  Aarnout Brombacher,et al.  Probability... , 2009, Qual. Reliab. Eng. Int..

[45]  Somnath Ghosh,et al.  A framework for automated analysis and simulation of 3D polycrystalline microstructures. Part 2: Synthetic structure generation , 2008 .

[46]  Somnath Ghosh,et al.  Statistically Equivalent Representative Volume Elements for Unidirectional Composite Microstructures: Part II - With Interfacial Debonding , 2006 .

[47]  Somnath Ghosh,et al.  A framework for automated analysis and simulation of 3D polycrystalline microstructures. , 2008 .

[48]  Achintya Haldar,et al.  Probability, Reliability and Statistical Methods in Engineering Design (Haldar, Mahadevan) , 1999 .

[49]  Torquato,et al.  Lineal measures of clustering in overlapping particle systems. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[50]  A. Fatemi,et al.  A CRITICAL PLANE APPROACH TO MULTIAXIAL FATIGUE DAMAGE INCLUDING OUT‐OF‐PHASE LOADING , 1988 .

[51]  David L. McDowell,et al.  Simulation-based strategies for microstructure-sensitive fatigue modeling , 2007 .

[52]  A. N. Stroh The formation of cracks as a result of plastic flow , 1954, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[53]  M. Graef,et al.  On the use of moment invariants for the automated analysis of 3D particle shapes , 2008 .

[54]  J. M. Larsen,et al.  Towards a physics-based description of fatigue variability behavior in probabilistic life-prediction , 2009 .

[55]  W. Evans,et al.  Impact of texture on mechanical properties in an advanced titanium alloy , 2001 .

[56]  Michael Vormwald,et al.  Deformation behaviour, short crack growth and fatigue livesunder multiaxial nonproportional loading , 2006 .

[57]  James M. Larsen,et al.  Random Heterogeneity Scales and Probabilistic Description of the Long-Lifetime Regime of Fatigue (Preprint) , 2007 .

[58]  Somnath Ghosh,et al.  Crystal Plasticity Based Fe Model for Understanding Microstructural Effects on Creep and Dwell Fatigue in Ti-6242 , 2006 .

[59]  David L. McDowell,et al.  Basic issues in the mechanics of high cycle metal fatigue , 1996 .

[60]  W. M. Rainforth,et al.  TEM observations of fatigue damage accumulation at the surface of the near-α titanium alloy IMI 834 , 1996 .

[61]  D. McDowell,et al.  Microstructure-sensitive modeling of high cycle fatigue , 2010 .

[62]  J. M. Larsen,et al.  Dual fatigue failure modes in Ti-6Al-2Sn-4Zr-6Mo and consequences on probabilistic life prediction , 2003 .

[63]  S. Suresh Fatigue of materials , 1991 .

[64]  W. Marsden I and J , 2012 .

[65]  Michael Vormwald,et al.  Short fatigue crack growth under nonproportional multiaxial elastic–plastic strains , 2006 .