Dust fluxes and iron fertilization in Holocene and Last Glacial Maximum climates

Mineral dust aerosols play a major role in present and past climates. To date, we rely on climate models for estimates of dust fluxes to calculate the impact of airborne micronutrients on biogeochemical cycles. Here we provide a new global dust flux data set for Holocene and Last Glacial Maximum (LGM) conditions based on observational data. A comparison with dust flux simulations highlights regional differences between observations and models. By forcing a biogeochemical model with our new data set and using this model's results to guide a millennial‐scale Earth System Model simulation, we calculate the impact of enhanced glacial oceanic iron deposition on the LGM‐Holocene carbon cycle. On centennial timescales, the higher LGM dust deposition results in a weak reduction of <10 ppm in atmospheric CO2 due to enhanced efficiency of the biological pump. This is followed by a further ~10 ppm reduction over millennial timescales due to greater carbon burial and carbonate compensation.

[1]  P. Ziveri,et al.  Boron isotope evidence for oceanic carbon dioxide leakage during the last deglaciation , 2015, Nature.

[2]  S. Goldstein,et al.  Biological response to millennial variability of dust and nutrient supply in the Subantarctic South Atlantic Ocean , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[3]  G. Haug,et al.  Iron Fertilization of the Subantarctic Ocean During the Last Ice Age , 2014, Science.

[4]  Olivier Aumont,et al.  The impact of different external sources of iron on the global carbon cycle , 2014 .

[5]  G. Kuhn,et al.  Increased Dust Deposition in the Pacific Southern Ocean During Glacial Periods , 2014, Science.

[6]  M. Kylander,et al.  A novel geochemical approach to paleorecords of dust deposition and effective humidity : 8500 years of peat accumulation at Store Mosse (the Great Bog), Sweden , 2013 .

[7]  Robert M. Graham,et al.  Southern Hemisphere westerly wind changes during the Last Glacial Maximum: paleo-data synthesis , 2013 .

[8]  J. H. Lee,et al.  The role of mineral-dust aerosols in polar temperature amplification , 2013 .

[9]  G. Haug,et al.  Two Modes of Change in Southern Ocean Productivity Over the Past Million Years , 2013, Science.

[10]  Andrei P. Sokolov,et al.  Long-Term climate change commitment and reversibility: An EMIC intercomparison , 2013 .

[11]  N. Mahowald,et al.  Improved dust representation in the Community Atmosphere Model , 2012 .

[12]  Rüdiger Röttgers,et al.  Deep carbon export from a Southern Ocean iron-fertilized diatom bloom , 2012, Nature.

[13]  J. K. Ayers,et al.  Improving aerosol distributions below clouds by assimilating satellite-retrieved cloud droplet number , 2012, Proceedings of the National Academy of Sciences.

[14]  H. Fischer,et al.  Centennial mineral dust variability in high-resolution ice core data from Dome C, Antarctica , 2012 .

[15]  H. Tsujino,et al.  A New Global Climate Model of the Meteorological Research Institute: MRI-CGCM3 —Model Description and Basic Performance— , 2012 .

[16]  N. Mahowald Aerosol Indirect Effect on Biogeochemical Cycles and Climate , 2011, Science.

[17]  S. Emori,et al.  MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments , 2011 .

[18]  Gerald H. Haug,et al.  Southern Ocean dust–climate coupling over the past four million years , 2011, Nature.

[19]  Michael Schulz,et al.  Global dust model intercomparison in AeroCom phase I , 2011 .

[20]  G. Haug,et al.  Carbon dioxide effects of Antarctic stratification, North Atlantic Intermediate Water formation, and subantarctic nutrient drawdown during the last ice age: Diagnosis and synthesis in a geochemical box model , 2010 .

[21]  G. Haug,et al.  The polar ocean and glacial cycles in atmospheric CO2 concentration , 2010, Nature.

[22]  Adrian Chappell,et al.  Fertilizing the Amazon and equatorial Atlantic with West African dust , 2010 .

[23]  Joseph M. Prospero,et al.  Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum , 2010 .

[24]  Jean-Claude Dutay,et al.  Quantifying the roles of ocean circulation and biogeochemistry in governing ocean carbon-13 and atmospheric carbon dioxide at the last glacial maximum , 2009 .

[25]  E. Achterberg,et al.  Iron limitation of the postbloom phytoplankton communities in the Iceland Basin , 2009 .

[26]  Toshihiko Takemura,et al.  A simulation of the global distribution and radiative forcing of soil dust aerosols at the Last Glacial Maximum , 2009 .

[27]  A. Schroth,et al.  Iron solubility driven by speciation in dust sources to the ocean , 2009 .

[28]  A. Rosell‐Melé,et al.  Links between iron supply, marine productivity, sea surface temperature, and CO2 over the last 1.1 Ma , 2009 .

[29]  E. Bettis,et al.  Isotopic evidence for the diversity of late Quaternary loess in Nebraska: Glaciogenic and nonglaciogenic sources , 2008 .

[30]  S. Olsen,et al.  Presentation, calibration and validation of the low-order, DCESS Earth System Model (Version 1) , 2008 .

[31]  David McGee,et al.  Covariant Glacial-Interglacial Dust Fluxes in the Equatorial Pacific and Antarctica , 2008, Science.

[32]  M. Bigler,et al.  Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core , 2008, Nature.

[33]  S. Bonnet,et al.  Dissolved iron distribution in the tropical and sub tropical South Eastern Pacific , 2007 .

[34]  Olivier Aumont,et al.  Ocean biogeochemistry exhibits contrasting responses to a large scale reduction in dust deposition , 2007 .

[35]  Sungmin Hong,et al.  The impact of climatic conditions on Pb and Sr isotopic ratios found in Greenland ice, 7–150 ky BP , 2007 .

[36]  R. Röthlisberger,et al.  Glacial/interglacial changes in mineral dust and sea‐salt records in polar ice cores: Sources, transport, and deposition , 2007 .

[37]  E. Boyle,et al.  Mesoscale Iron Enrichment Experiments 1993-2005: Synthesis and Future Directions , 2007, Science.

[38]  L. Gallardo,et al.  Offshore transport episodes of anthropogenic sulfur in northern Chile: Potential impact on the stratocumulus cloud deck , 2006 .

[39]  N. Mahowald,et al.  Change in atmospheric mineral aerosols in response to climate: Last glacial period, preindustrial, modern, and doubled carbon dioxide climates , 2006 .

[40]  Stephanie Dutkiewicz,et al.  Atmospheric carbon dioxide in a less dusty world , 2006 .

[41]  M. Lozier,et al.  The effect of advection on the nutrient reservoir in the North Atlantic subtropical gyre , 2005, Nature.

[42]  Ulf Riebesell,et al.  Synthesis of iron fertilization experiments: From the iron age in the age of enlightenment , 2005 .

[43]  Corinne Le Quéré,et al.  Role of Marine Biology in Glacial-Interglacial CO2 Cycles , 2005, Science.

[44]  U. Lohmann,et al.  Global indirect aerosol effects: a review , 2004 .

[45]  F. Joos,et al.  Ice core evidence for the extent of past atmospheric CO2 change due to iron fertilisation , 2004 .

[46]  P. Loubere,et al.  Export fluxes of calcite in the eastern equatorial Pacific from the Last Glacial Maximum to present , 2004 .

[47]  Matthew M. Mills,et al.  Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic , 2004, Nature.

[48]  A. Ridgwell Implications of the glacial CO2 “iron hypothesis” for Quaternary climate change , 2003 .

[49]  Ina Tegen,et al.  Modeling the mineral dust aerosol cycle in the climate system , 2003 .

[50]  Paul J. DeMott,et al.  Saharan dust storms and indirect aerosol effects on clouds: CRYSTAL‐FACE results , 2003 .

[51]  Corinne Le Quéré,et al.  Dust impact on marine biota and atmospheric CO2 in glacial periods , 2003 .

[52]  J. Steffensen,et al.  Continuous record of microparticle concentration and size distribution in the central Greenland NGRIP ice core during the last glacial period , 2003 .

[53]  I. Prentice,et al.  Seasonal and interannual variability of the mineral dust cycle under present and glacial climate conditions , 2002 .

[54]  M. Brzezinski,et al.  Silicic acid leakage from the Southern Ocean: A possible explanation for glacial atmospheric pCO2 , 2002 .

[55]  J. Penner,et al.  Introduction to special section: Outstanding problems in quantifying the radiative impacts of mineral dust , 2001 .

[56]  Sandy P. Harrison,et al.  DIRTMAP: the geological record of dust , 2001 .

[57]  E. Boyle,et al.  Glacial/interglacial variations in atmospheric carbon dioxide , 2000, Nature.

[58]  Andrew J. Watson,et al.  A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization , 2000, Nature.

[59]  A. Watson,et al.  Effect of iron supply on Southern Ocean CO2 uptake and implications for glacial atmospheric CO2 , 2000, Nature.

[60]  F. Grousset,et al.  Characterization of late glacial continental dust in the Greenland Ice Core Project ice core , 2000 .

[61]  Sandy P. Harrison,et al.  Dust sources and deposition during the last glacial maximum and current climate: A comparison of model results with paleodata from ice cores and marine sediments , 1999 .

[62]  Francis E. Grousset,et al.  Asian provenance of glacial dust (stage 2) in the Greenland Ice Sheet Project 2 Ice Core , 1997 .

[63]  J. Steffensen The size distribution of microparticles from selected segments of the Greenland Ice Core Project ice core representing different climatic periods , 1997 .

[64]  D. Sigman,et al.  Contribution of Southern Ocean surface-water stratification to low atmospheric CO2 concentrations during the last glacial period , 1997, Nature.

[65]  Raphael Kudela,et al.  A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean , 1996, Nature.

[66]  A. Lacis,et al.  The influence on climate forcing of mineral aerosols from disturbed soils , 1996, Nature.

[67]  M. Hansson The Renland ice core. A Northern Hemisphere record of aerosol composition over 120,000 years , 1994 .

[68]  S. Fitzwater,et al.  The case for iron , 1991 .

[69]  W. Broecker,et al.  The Peru Upwelling and the Ventilation of the South Pacific Thermocline , 1991 .

[70]  S. Fitzwater,et al.  Iron in Antarctic waters , 1990, Nature.

[71]  John H. Martin glacial-interglacial Co2 change : the iron hypothesis , 1990 .

[72]  Shingo Watanabe MIROC-ESM : model description and basic results of CMIP 5-20 c 3 m experiments , 2011 .

[73]  F. Joos,et al.  The role of Southern Ocean processes in orbital and millennial CO2 variations – A synthesis , 2010 .

[74]  J. P. Dunne,et al.  High-latitude controls of thermocline nutrients and low latitude biological productivity , 2004, Nature.

[75]  E. Boyle Vertical oceanic nutrient fractionation and glacial/interglacial CO2 cycles , 1988, Nature.

[76]  S. Fitzwater,et al.  Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic , 1988, Nature.