The Complexity of the Equivalence Problem for Simple Programs
暂无分享,去创建一个
[1] John C. Cherniavsky. Simple Programs Realize Exactly Presberger Formulas , 1976, SIAM J. Comput..
[2] Dennis Tsichritzis,et al. The Equivalence Problem of Simple Programs , 1970, JACM.
[3] Eitan M. Gurari,et al. The Complexity of the Equivalence Problem for two Characterizations of Presburger Sets , 1981, Theor. Comput. Sci..
[4] Brenda S. Baker,et al. Reversal-Bounded Multipushdown Machines , 1974, J. Comput. Syst. Sci..
[5] Sartaj Sahni,et al. On the Computational Complexity of Scheme Equivalence , 1974 .
[6] S. Ginsburg,et al. Semigroups, Presburger formulas, and languages. , 1966 .
[7] Alfred V. Aho,et al. The Design and Analysis of Computer Algorithms , 1974 .
[8] M. Fischer,et al. SUPER-EXPONENTIAL COMPLEXITY OF PRESBURGER ARITHMETIC , 1974 .
[9] Oscar H. Ibarra,et al. Reversal-Bounded Multicounter Machines and Their Decision Problems , 1978, JACM.
[10] Samuel N. Kamin,et al. A Complete and Consistent Hoare Axiomatics for a Simple Programming Language , 1979, JACM.
[11] Allan Borodin,et al. Subrecursive Programming Languages, Part I: efficiency and program structure , 1972, JACM.
[12] Stephen A. Cook,et al. The complexity of theorem-proving procedures , 1971, STOC.
[13] Dennis M. Ritchie,et al. The complexity of loop programs , 1967, ACM National Conference.