LQG optimal control system design under plant perturbation and noise uncertainty : A state-space approach

Abstract In this paper, the stochastic linear dynamic system with uncertain parametric perturbations and uncertain noise covariances is studied. Based on minimax theory and the Bellman-Gronwall inequality, a sufficient condition for robust stability is derived. Finally, a robust LQG optimal control design technique is employed to treat this problem.

[1]  Christopher Martin,et al.  Robust filtering and prediction for linear systems with uncertain dynamics: A game-theoretic approach , 1983, 1982 21st IEEE Conference on Decision and Control.

[2]  A. Kestenbaum,et al.  The Effect of Modeling Errors on Linear State Reconstructors and Regulators , 1974 .

[3]  S. Barnett Linear system theory and design: By C.-T. Chen , 1986, Autom..

[4]  C. Desoer,et al.  Feedback Systems: Input-Output Properties , 1975 .

[5]  C. D. Johnson,et al.  Accomodation of external disturbances in linear regulator and servomechanism problems , 1971 .

[6]  G. Stein,et al.  Multivariable feedback design: Concepts for a classical/modern synthesis , 1981 .

[7]  C. A. Desoer,et al.  Nonlinear Systems Analysis , 1978 .

[8]  Douglas P. Looze,et al.  Minimax control of linear stochastic systems with noise uncertainty , 1983 .

[9]  Harold W. Sorenson,et al.  Recursive fading memory filtering , 1971, Inf. Sci..

[10]  S. Verdú,et al.  Minimax linear observers and regulators for stochastic systems with uncertain second-order statistics , 1984 .

[11]  Brian D. O. Anderson,et al.  Linear Optimal Control , 1971 .

[12]  M. Athans,et al.  Robustness results in linear-quadratic Gaussian based multivariable control designs , 1981 .

[13]  Huibert Kwakernaak,et al.  Linear Optimal Control Systems , 1972 .

[14]  Douglas P. Looze,et al.  Minimax Control of Linear Stochastic Systems with Noise Uncertainty , 1982, 1982 American Control Conference.

[15]  Brian D. O. Anderson,et al.  Exponential data weighting in the Kalman-Bucy filter , 1973, Inf. Sci..

[16]  C. D. Johnson Disturbance-utilizing controllers for noisy measurements and disturbances I. The continuous-time case , 1984 .