Stokes‐Fourier and acoustic limits for the Boltzmann equation: Convergence proofs

We establish a Stokes-Fourier limit for the Boltzmann equation considered over any periodic spatial domain of dimension 2 or more. Appropriately scaled families of DiPerna-Lions renormalized solutions are shown to have fluctuations that globally in time converge weakly to a unique limit governed by a solution of Stokes-Fourier motion and heat equations provided that the fluid moments of their initial fluctuations converge to appropriate L 2 initial data of the StokesFourier equations. Both the motion and heat equations are recovered in the limit by controlling the fluxes and the local conservation defects of the DiPerna-Lions solutions with dissipation rate estimates. The scaling of the fluctuations with respect to Knudsen number is essentially optimal. The assumptions on the collision kernel are little more than those required for the DiPerna-Lions theory and that the viscosity and heat conduction are finite. For the acoustic limit, these techniques also remove restrictions to bounded collision kernels and improve the scaling of the fluctuations. Both weak limits become strong when the initial fluctuations converge entropically to appropriate L 2 initial data. c 2002 John Wiley & Sons, Inc.

[1]  Pierre-Louis Lions,et al.  From the Boltzmann Equations¶to the Equations of¶Incompressible Fluid Mechanics, I , 2001 .

[2]  S. Ukai The incompressible limit and the initial layer of the compressible Euler equation , 1986 .

[3]  Raffaele Esposito,et al.  Incompressible Navier-Stokes and Euler Limits of the Boltzmann Equation , 1989 .

[4]  L. Boltzmann Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen , 1970 .

[5]  David Enskog,et al.  Kinetische theorie der Vorgänge in Mässig verdünnten Gasen , 1917 .

[6]  R. Illner,et al.  The mathematical theory of dilute gases , 1994 .

[7]  G. B. The Dynamical Theory of Gases , 1916, Nature.

[8]  C. David Levermore Entropic convergence and the linearized limit for the boltzmann equation , 1993 .

[9]  F. Golse,et al.  Fluid dynamic limits of kinetic equations. I. Formal derivations , 1991 .

[10]  H. Grad Principles of the Kinetic Theory of Gases , 1958 .

[11]  D. Hilbert,et al.  Begründung der kinetischen Gastheorie , 1912 .

[12]  F. Golse,et al.  Acoustic and stokes limits for the Boltzmann equation , 1998 .

[13]  C. Cercignani The Boltzmann equation and its applications , 1988 .

[14]  R. Caflisch The fluid dynamic limit of the nonlinear boltzmann equation , 1980 .

[15]  R. Glassey,et al.  The Cauchy Problem in Kinetic Theory , 1987 .

[16]  Thomas C. Sideris,et al.  Formation of singularities in three-dimensional compressible fluids , 1985 .

[17]  François Golse,et al.  Kinetic equations and asympotic theory , 2000 .

[18]  François Golse,et al.  Fluid dynamic limits of kinetic equations II convergence proofs for the boltzmann equation , 1993 .

[19]  Claude Bardos,et al.  Sur les limites asymptotiques de la théorie cinétique conduisant à la dynamique des fluides incompressibles , 1989 .

[20]  François Golse,et al.  The Acoustic Limit for the Boltzmann Equation , 2000 .

[21]  P. Lions,et al.  On the Cauchy problem for Boltzmann equations: global existence and weak stability , 1989 .

[22]  Claude Bardos,et al.  The Classical Incompressible Navier-Stokes Limit of the Boltzmann Equation(Mathematical Analysis of Phenomena in Fluid and Plasma Dynamics) , 1991 .

[23]  A. Bobylev Quasistationary hydrodynamics for the Boltzmann equation , 1995 .