Metallo-β-lactamase: structure and mechanism

[1]  O. Herzberg,et al.  For the record: Structural consequences of the active site substitution Cys181 → Ser in metallo‐β‐lactamase from bacteroides fragilis , 2008, Protein science : a publication of the Protein Society.

[2]  Z Wang,et al.  On the mechanism of the metallo-beta-lactamase from Bacteroides fragilis. , 1999, Biochemistry.

[3]  J. Frère,et al.  Mono- and binuclear Zn2+-beta-lactamase. Role of the conserved cysteine in the catalytic mechanism. , 1999, The Journal of biological chemistry.

[4]  J. Frère,et al.  Biochemical Characterization of the Pseudomonas aeruginosa 101/1477 Metallo-β-Lactamase IMP-1 Produced byEscherichia coli , 1999, Antimicrobial Agents and Chemotherapy.

[5]  G. Cornaglia,et al.  Appearance of IMP-1 metallo-β-lactamase in Europe , 1999, The Lancet.

[6]  P. Nordmann,et al.  Molecular characterization of a carbapenem-hydrolyzing beta-lactamase from Chryseobacterium (Flavobacterium) indologenes. , 1999, FEMS microbiology letters.

[7]  M. Crowder,et al.  Kinetic mechanism of metallo-beta-lactamase L1 from Stenotrophomonas maltophilia. , 1999, Biochemistry.

[8]  M. Page,et al.  The Reactivity of β-Lactams, the Mechanism of Catalysis and the Inhibition of β-Lactamases , 1998, Current Pharmaceutical Design.

[9]  J. Frère,et al.  The beta-lactamase cycle: a tale of selective pressure and bacterial ingenuity. , 1999, Natural product reports.

[10]  I. Taylor,et al.  The crystal structure of the L1 metallo-beta-lactamase from Stenotrophomonas maltophilia at 1.7 A resolution. , 1998, Journal of molecular biology.

[11]  H. Dyson,et al.  The identification of metal‐binding ligand residues in metalloproteins using nuclear magnetic resonance spectroscopy , 1998, Protein science : a publication of the Protein Society.

[12]  J. Frère,et al.  Mono‐ and binuclear Zn‐β‐lactamase from Bacteroides fragilis: catalytic and structural roles of the zinc ions , 1998, FEBS letters.

[13]  S. Benkovic,et al.  Direct observation of an enzyme-bound intermediate in the catalytic cycle of the metallo-β-lactamase from Bacteroides fragilis [15] , 1998 .

[14]  A. Aceto,et al.  A zinc-binding motif conserved in glyoxalase II, beta-lactamase and arylsulfatases. , 1998, Trends in biochemical sciences.

[15]  S. Benkovic,et al.  Purification, Characterization, and Kinetic Studies of a SolubleBacteroides fragilis Metallo-β-lactamase That Provides Multiple Antibiotic Resistance* , 1998, The Journal of Biological Chemistry.

[16]  B. Sutton,et al.  Crystal structure of the zinc-dependent beta-lactamase from Bacillus cereus at 1.9 A resolution: binuclear active site with features of a mononuclear enzyme. , 1998, Biochemistry.

[17]  K. Bush,et al.  Metallo-β-Lactamases: A Class Apart , 1998 .

[18]  Yasuaki Yamada,et al.  Rapid Detection and Evaluation of Clinical Characteristics of Emerging Multiple-Drug-Resistant Gram-Negative Rods Carrying the Metallo-β-Lactamase GeneblaIMP , 1998, Antimicrobial Agents and Chemotherapy.

[19]  E. Ceccarelli,et al.  Spectroscopic characterization of a binuclear metal site in Bacillus cereus beta-lactamase II. , 1998, Biochemistry.

[20]  J. Frère,et al.  Characterization and sequence of the Chryseobacterium (Flavobacterium) meningosepticum carbapenemase: a new molecular class B beta-lactamase showing a broad substrate profile. , 1998, The Biochemical journal.

[21]  T. Sawai,et al.  Novel metallo β-lactamase mediated by a Shigella flexneri plasmid , 1998 .

[22]  R. Levesque,et al.  Molecular Heterogeneity of the L-1 Metallo-β-Lactamase Family from Stenotrophomonas maltophilia , 1998, Antimicrobial Agents and Chemotherapy.

[23]  M. Galleni,et al.  The mechanism of catalysis and the inhibition of the Bacillus cereus zinc-dependent beta-lactamase. , 1998, The Biochemical journal.

[24]  P. Fitzgerald,et al.  Unanticipated inhibition of the metallo-beta-lactamase from Bacteroides fragilis by 4-morpholineethanesulfonic acid (MES): a crystallographic study at 1.85-A resolution. , 1998, Biochemistry.

[25]  T. Walsh,et al.  Overexpression, Purification, and Characterization of the Cloned Metallo-β-Lactamase L1 fromStenotrophomonas maltophilia , 1998, Antimicrobial Agents and Chemotherapy.

[26]  D. Vanderwall,et al.  Antibiotic sensitization using biphenyl tetrazoles as potent inhibitors of Bacteroides fragilis metallo-beta-lactamase. , 1998, Chemistry & biology.

[27]  A. MacGowan,et al.  Nucleotide and Amino Acid Sequences of the Metallo-β-Lactamase, ImiS, from Aeromonas veronii bv. sobria , 1998, Antimicrobial Agents and Chemotherapy.

[28]  I. Massova,et al.  Kinship and Diversification of Bacterial Penicillin-Binding Proteins and β-Lactamases , 1998, Antimicrobial Agents and Chemotherapy.

[29]  J. Frère,et al.  X-ray structure of the ZnII beta-lactamase from Bacteroides fragilis in an orthorhombic crystal form. , 1998, Acta crystallographica. Section D, Biological crystallography.

[30]  O. Herzberg,et al.  Crystal structures of the cadmium‐ and mercury‐substituted metallo‐β‐lactamase from Bacteroides fragilis , 1997, Protein science : a publication of the Protein Society.

[31]  D. Payne,et al.  Inhibition of metallo-beta-lactamases by a series of thiol ester derivatives of mercaptophenylacetic acid. , 1997, FEMS microbiology letters.

[32]  J. Frère,et al.  Zn(II) dependence of the Aeromonas hydrophila AE036 metallo-beta-lactamase activity and stability. , 1997, Biochemistry.

[33]  D. Payne,et al.  Inhibition of metallo-beta-lactamases by a series of mercaptoacetic acid thiol ester derivatives , 1997, Antimicrobial agents and chemotherapy.

[34]  S. Ichiyama,et al.  PCR detection of metallo-beta-lactamase gene (blaIMP) in gram-negative rods resistant to broad-spectrum beta-lactams , 1996, Journal of clinical microbiology.

[35]  Edward P. Zovinka,et al.  Characterization of the metal-binding sites of the beta-lactamase from Bacteroides fragilis. , 1996, Biochemistry.

[36]  O. Herzberg,et al.  Crystal structure of the wide-spectrum binuclear zinc beta-lactamase from Bacteroides fragilis. , 1996, Structure.

[37]  J. Frère,et al.  The 3‐D structure of a zinc metallo‐beta‐lactamase from Bacillus cereus reveals a new type of protein fold. , 1995 .

[38]  Y. Arakawa,et al.  Plasmid-mediated dissemination of the metallo-beta-lactamase gene blaIMP among clinically isolated strains of Serratia marcescens , 1995, Antimicrobial agents and chemotherapy.

[39]  Timothy R. Walsh,et al.  Sequence analysis of the L1 metallo-β-lactamase from Xanthomonas maltophilia , 1994 .

[40]  F. Yoshimura,et al.  Molecular characterization of an enterobacterial metallo beta-lactamase found in a clinical isolate of Serratia marcescens that shows imipenem resistance , 1994, Antimicrobial Agents and Chemotherapy.

[41]  J. Frère,et al.  An overview of the kinetic parameters of class B beta-lactamases. , 1993, The Biochemical journal.

[42]  Kunitomo Watanabe,et al.  Conjugal transfer of imipenem resistance in Bacteroides fragilis. , 1992, The Journal of antibiotics.

[43]  O. Massidda,et al.  The Aeromonas hydrophila cphA gene: molecular heterogeneity among class B metallo-beta-lactamases , 1991, Journal of bacteriology.

[44]  S. Mitsuhashi,et al.  Transferable imipenem resistance in Pseudomonas aeruginosa , 1991, Antimicrobial Agents and Chemotherapy.

[45]  Y. Gluzman,et al.  Cloning and sequencing of the class B beta-lactamase gene (ccrA) from Bacteroides fragilis TAL3636 , 1990, Antimicrobial Agents and Chemotherapy.

[46]  D. Phillips,et al.  An X-ray-crystallographic study of beta-lactamase II from Bacillus cereus at 0.35 nm resolution. , 1987, The Biochemical journal.

[47]  S. G. Waley,et al.  Changes in the coordination geometry of the active-site metal during catalysis of benzylpenicillin hydrolysis by Bacillus cereus beta-lactamase II. , 1986, Biochemistry.

[48]  S. G. Waley,et al.  Cryoenzymology of Bacillus cereus beta-lactamase II. , 1985, Biochemistry.

[49]  M. Hussain,et al.  Cloning and sequencing of the metallothioprotein beta-lactamase II gene of Bacillus cereus 569/H in Escherichia coli , 1985, Journal of bacteriology.

[50]  N. Gensmantel,et al.  Metal ion catalysis in the aminolysis of penicillin , 1978 .