Protein Networks as Logic Functions in Development and Cancer

Many biological and clinical outcomes are based not on single proteins, but on modules of proteins embedded in protein networks. A fundamental question is how the proteins within each module contribute to the overall module activity. Here, we study the modules underlying three representative biological programs related to tissue development, breast cancer metastasis, or progression of brain cancer, respectively. For each case we apply a new method, called Network-Guided Forests, to identify predictive modules together with logic functions which tie the activity of each module to the activity of its component genes. The resulting modules implement a diverse repertoire of decision logic which cannot be captured using the simple approximations suggested in previous work such as gene summation or subtraction. We show that in cancer, certain combinations of oncogenes and tumor suppressors exert competing forces on the system, suggesting that medical genetics should move beyond cataloguing individual cancer genes to cataloguing their combinatorial logic.

[1]  L. Ein-Dor,et al.  Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Yufeng Lu,et al.  HOXA9 Activates Transcription of the Gene Encoding gp91Phox during Myeloid Differentiation* , 2005, Journal of Biological Chemistry.

[3]  Doheon Lee,et al.  Inferring Pathway Activity toward Precise Disease Classification , 2008, PLoS Comput. Biol..

[4]  K. Lunetta,et al.  Identifying SNPs predictive of phenotype using random forests , 2005, Genetic epidemiology.

[5]  Eytan Domany,et al.  Outcome signature genes in breast cancer: is there a unique set? , 2004, Breast Cancer Research.

[6]  J. Davies,et al.  Molecular Biology of the Cell , 1983, Bristol Medico-Chirurgical Journal.

[7]  Michael L. Creech,et al.  Integration of biological networks and gene expression data using Cytoscape , 2007, Nature Protocols.

[8]  D. Hanahan,et al.  The Hallmarks of Cancer , 2000, Cell.

[9]  J. Foekens,et al.  Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer , 2005, The Lancet.

[10]  T. Ideker,et al.  Network-based classification of breast cancer metastasis , 2007, Molecular systems biology.

[11]  Mehmet Koyutürk,et al.  An Integrative -omics Approach to Identify Functional Sub-Networks in Human Colorectal Cancer , 2010, PLoS Comput. Biol..

[12]  Salim A. Chowdhury,et al.  Subnetwork State Functions Define Dysregulated Subnetworks in Cancer , 2010, J. Comput. Biol..

[13]  J. Epstein,et al.  Sox10 and Pax3 physically interact to mediate activation of a conserved c-RET enhancer. , 2003, Human molecular genetics.

[14]  Richard M. Karp,et al.  DEGAS: De Novo Discovery of Dysregulated Pathways in Human Diseases , 2010, PloS one.

[15]  R. Aebersold,et al.  An Essential Switch in Subunit Composition of a Chromatin Remodeling Complex during Neural Development , 2007, Neuron.

[16]  Yudong D. He,et al.  A Gene-Expression Signature as a Predictor of Survival in Breast Cancer , 2002 .

[17]  Xiao-Jiang Li,et al.  Huntingtin-protein interactions and the pathogenesis of Huntington's disease. , 2004, Trends in genetics : TIG.

[18]  G. Crabtree,et al.  Chromatin remodelling during development , 2010, Nature.

[19]  Anirvan Ghosh,et al.  Dendrite Development Regulated by CREST, a Calcium-Regulated Transcriptional Activator , 2004, Science.

[20]  O. Yoshie,et al.  TAL1 and LIM-Only Proteins Synergistically Induce Retinaldehyde Dehydrogenase 2 Expression in T-Cell Acute Lymphoblastic Leukemia by Acting as Cofactors for GATA3 , 1998, Molecular and Cellular Biology.

[21]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[22]  Bernard M. E. Moret,et al.  Decision Trees and Diagrams , 1982, CSUR.

[23]  Jan Komorowski,et al.  Monte Carlo Feature Selection and Interdependency Discovery in Supervised Classification , 2010, Advances in Machine Learning II.

[24]  R. Ren,et al.  Mechanisms of BCR–ABL in the pathogenesis of chronic myelogenous leukaemia , 2005, Nature Reviews Cancer.

[25]  Benno Schwikowski,et al.  Discovering regulatory and signalling circuits in molecular interaction networks , 2002, ISMB.

[26]  G. Stein,et al.  HOXA10 Controls Osteoblastogenesis by Directly Activating Bone Regulatory and Phenotypic Genes , 2007, Molecular and Cellular Biology.

[27]  L. Bundy,et al.  CCAAT/enhancer binding protein beta (C/EBPβ)-2 transforms normal mammary epithelial cells and induces epithelial to mesenchymal transition in culture , 2003, Oncogene.

[28]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[29]  T. Barrette,et al.  Mining for regulatory programs in the cancer transcriptome , 2005, Nature Genetics.

[30]  E. Prochownik Functional and physical communication between oncoproteins and tumor suppressors , 2005, Cellular and Molecular Life Sciences CMLS.

[31]  D. Koller,et al.  A module map showing conditional activity of expression modules in cancer , 2004, Nature Genetics.

[32]  Myengmo Kang,et al.  Hoxc8 represses BMP-induced expression of Smad6 , 2010, Molecules and cells.

[33]  TaeHyun Hwang,et al.  Learning on Weighted Hypergraphs to Integrate Protein Interactions and Gene Expressions for Cancer Outcome Prediction , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[34]  Ron Shamir,et al.  Identification of functional modules using network topology and high-throughput data , 2007, BMC Systems Biology.

[35]  H. Cordell Detecting gene–gene interactions that underlie human diseases , 2009, Nature Reviews Genetics.

[36]  Emmanuel Barillot,et al.  Classification of microarray data using gene networks , 2007, BMC Bioinformatics.

[37]  Judith A. Blake,et al.  The Mouse Genome Database genotypes::phenotypes , 2008, Nucleic Acids Res..

[38]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[39]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[40]  L. Hood,et al.  A Genomic Regulatory Network for Development , 2002, Science.

[41]  J. Hopfield,et al.  From molecular to modular cell biology , 1999, Nature.

[42]  Stuart H. Orkin,et al.  The SWI/SNF complex — chromatin and cancer , 2004, Nature Reviews Cancer.

[43]  M E MoretBernard Decision Trees and Diagrams , 1982 .

[44]  R. Shamir,et al.  Regulatory networks define phenotypic classes of human stem cell lines , 2008, Nature.

[45]  X. Cao,et al.  Smad1 Domains Interacting with Hoxc-8 Induce Osteoblast Differentiation* , 2000, The Journal of Biological Chemistry.

[46]  D. Opitz,et al.  Popular Ensemble Methods: An Empirical Study , 1999, J. Artif. Intell. Res..

[47]  E. Davidson,et al.  cis-regulatory processing of Notch signaling input to the sea urchin glial cells missing gene during mesoderm specification. , 2006, Developmental biology.

[48]  Delbert Dueck,et al.  Clustering by Passing Messages Between Data Points , 2007, Science.

[49]  Vili Podgorelec,et al.  Decision trees , 2018, Encyclopedia of Database Systems.

[50]  Mariano J. Alvarez,et al.  A human B-cell interactome identifies MYB and FOXM1 as master regulators of proliferation in germinal centers , 2010, Molecular systems biology.

[51]  A. Sultan,et al.  Stat5 promotes homotypic adhesion and inhibits invasive characteristics of human breast cancer cells , 2005, Oncogene.

[52]  Trey Ideker,et al.  Boosting Signal-to-Noise in Complex Biology: Prior Knowledge Is Power , 2011, Cell.

[53]  E. Davidson The Regulatory Genome: Gene Regulatory Networks In Development And Evolution , 2006 .

[54]  Eric H Davidson,et al.  Logic of gene regulatory networks. , 2007, Current opinion in biotechnology.

[55]  Ariel S. Schwartz,et al.  An Atlas of Combinatorial Transcriptional Regulation in Mouse and Man , 2010, Cell.

[56]  Alexey I Nesvizhskii,et al.  An embryonic stem cell chromatin remodeling complex, esBAF, is essential for embryonic stem cell self-renewal and pluripotency , 2009, Proceedings of the National Academy of Sciences.

[57]  Thomas D. Wu,et al.  Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. , 2006, Cancer cell.

[58]  N. Campbell Genetic association database , 2004, Nature Reviews Genetics.

[59]  T. Gelehrter,et al.  Group 13 HOX proteins interact with the MH2 domain of R-Smads and modulate Smad transcriptional activation functions independent of HOX DNA-binding capability , 2005, Nucleic acids research.

[60]  Kenneth H. Buetow,et al.  Identification of Key Processes Underlying Cancer Phenotypes Using Biologic Pathway Analysis , 2007, PloS one.

[61]  David Warde-Farley,et al.  Dynamic modularity in protein interaction networks predicts breast cancer outcome , 2009, Nature Biotechnology.

[62]  V. Raman,et al.  HOXA5-Twist Interaction Alters p53 Homeostasis in Breast Cancer Cells* , 2005, Journal of Biological Chemistry.

[63]  M. Kim,et al.  Dynamic expression pattern of Hoxc8 during mouse early embryogenesis. , 2005, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology.

[64]  Jerzy Tiuryn,et al.  MODEVO: exploring modularity and evolution of protein interaction networks , 2010, Bioinform..

[65]  D. Pe’er,et al.  Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data , 2003, Nature Genetics.

[66]  M. Merville,et al.  IκB-α Enhances Transactivation by the HOXB7 Homeodomain-containing Protein* , 1999, The Journal of Biological Chemistry.

[67]  Chris Sander,et al.  CancerGenes: a gene selection resource for cancer genome projects , 2006, Nucleic Acids Res..

[68]  J. Uhm,et al.  The transcriptional network for mesenchymal transformation of brain tumours , 2010 .

[69]  Richard M. Karp,et al.  Detecting Disease-Specific Dysregulated Pathways Via Analysis of Clinical Expression Profiles , 2008, RECOMB.

[70]  Janan T Eppig,et al.  The mammalian phenotype ontology: enabling robust annotation and comparative analysis , 2009, Wiley interdisciplinary reviews. Systems biology and medicine.