The method of finite spheres in acoustic wave propagation through nonhomogeneous media: Inf-sup stability conditions

When the method of finite spheres is used for the solution of time-harmonic acoustic wave propagation problems in nonhomogeneous media, a mixed (or saddle-point) formulation is obtained in which the unknowns are the pressure fields and the Lagrange multiplier fields defined at the interfaces between the regions with distinct material properties. Then certain inf-sup conditions must be satisfied by the discretized spaces in order for the finite-dimensional problems to be well-posed. We discuss in this paper the analysis and use of these conditions. Since the conditions involve norms of functionals in fractional Sobolev spaces, we derive ‘stronger’ conditions that are simpler in form. These new conditions pave the way for the inf-sup testing, a tool for assessing the stability of the discretized problems.

[1]  S. Salsa,et al.  Partial Differential Equations in Action: From Modelling to Theory , 2010 .

[2]  Charbel Farhat,et al.  A higher‐order discontinuous enrichment method for the solution of high péclet advection–diffusion problems on unstructured meshes , 2010 .

[3]  D. Chapelle,et al.  The Finite Element Analysis of Shells - Fundamentals , 2003 .

[4]  Dominique Chapelle,et al.  On the ellipticity condition for model-parameter dependent mixed formulations , 2010 .

[5]  Nicolas Moës,et al.  Interface problems with quadratic X‐FEM: design of a stable multiplier space and error analysis , 2014 .

[6]  Joseph J Monaghan,et al.  An introduction to SPH , 1987 .

[7]  F. Ihlenburg Finite Element Analysis of Acoustic Scattering , 1998 .

[8]  Franck Boyer,et al.  Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models , 2012 .

[9]  J. Nédélec Acoustic and Electromagnetic Equations : Integral Representations for Harmonic Problems , 2001 .

[10]  Andrea Moiola,et al.  Is the Helmholtz Equation Really Sign-Indefinite? , 2014, SIAM Rev..

[11]  K. Bathe,et al.  Acoustic scattering in nonhomogeneous media and the problem of discontinuous gradients: Analysis and inf‐sup stability in the method of finite spheres , 2021, International Journal for Numerical Methods in Engineering.

[12]  K. Bathe,et al.  Transient wave propagation in inhomogeneous media with enriched overlapping triangular elements , 2020 .

[13]  Charbel Farhat,et al.  A discontinuous enrichment method for variable‐coefficient advection–diffusion at high Péclet number , 2011 .

[14]  Lingbo Zhang,et al.  The finite element method with overlapping elements A new paradigm for CAD driven simulations , 2017 .

[15]  K. Bathe,et al.  Inf-sup testing of some three-dimensional low-order finite elements for the analysis of solids , 2018, Computers & structures.

[16]  Roland Glowinski,et al.  An introduction to the mathematical theory of finite elements , 1976 .

[17]  P. G. Ciarlet,et al.  Linear and Nonlinear Functional Analysis with Applications , 2013 .

[18]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[19]  K. Bathe,et al.  The method of finite spheres , 2000 .

[20]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[21]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[22]  G. Leoni A First Course in Sobolev Spaces , 2009 .

[23]  F. Brezzi,et al.  A discourse on the stability conditions for mixed finite element formulations , 1990 .

[24]  M. Fortin,et al.  Mixed Finite Element Methods and Applications , 2013 .

[25]  Nicolas Moës,et al.  A stable Lagrange multiplier space for stiff interface conditions within the extended finite element method , 2009 .

[26]  Kathrin Abendroth,et al.  Computational Methods For Electromagnetics , 2016 .

[27]  Guirong Liu Meshfree Methods: Moving Beyond the Finite Element Method, Second Edition , 2009 .

[28]  Weizhu Bao,et al.  ON THE INF SUP CONDITION OF MIXED FINITE ELEMENT FORMULATIONS FOR ACOUSTIC FLUIDS , 2001 .

[29]  Klaus-Jürgen Bathe,et al.  Meshfree analysis of electromagnetic wave scattering from conducting targets , 2017 .

[30]  L. Tartar An Introduction to Sobolev Spaces and Interpolation Spaces , 2007 .

[31]  K. Bathe,et al.  Stability and patch test performance of contact discretizations and a new solution algorithm , 2001 .

[32]  Klaus-Jürgen Bathe,et al.  The inf–sup condition and its evaluation for mixed finite element methods , 2001 .

[33]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[34]  K. Bathe,et al.  The inf-sup test , 1993 .

[35]  W. McLean Strongly Elliptic Systems and Boundary Integral Equations , 2000 .

[36]  Ki-Tae Kim,et al.  The new paradigm of finite element solutions with overlapping elements in CAD – Computational efficiency of the procedure , 2018 .

[37]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[38]  Alexander G Iosilevich,et al.  An inf-sup test for shell finite elements , 2000 .

[39]  Jean-François Remacle,et al.  Imposing Dirichlet boundary conditions in the eXtended Finite Element Method , 2011 .

[40]  K. Bathe Finite Element Procedures , 1995 .

[41]  I. Harari,et al.  Three‐dimensional element configurations for the discontinuous enrichment method for acoustics , 2009 .

[42]  Charbel Farhat,et al.  A discontinuous enrichment method for the finite element solution of high Péclet advection-diffusion problems , 2009 .

[43]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[44]  Charbel Farhat,et al.  A discontinuous Galerkin method with Lagrange multipliers for the solution of Helmholtz problems in the mid-frequency regime , 2003 .