Compositionality of Hennessy-Milner Logic through Structural Operational Semantics

This paper presents a method for the decomposition of HML formulae. It can be used to decide whether a process algebra term satisfies a HML formula, by checking whether subterms satisfy certain formulae, obtained by decomposing the original formula. The method uses the structural operational semantics of the process algebra. The main contribution of this paper is that an earlier decomposition method from LARSEN [14] for the De Simone format is extended to the more general ntyft/ntyxt format without lookahead.

[1]  Jan Friso Groote,et al.  The meaning of negative premises in transition system specifications , 1991, JACM.

[2]  Robert de Simone,et al.  Higher-Level Synchronising Devices in Meije-SCCS , 1985, Theor. Comput. Sci..

[3]  Dexter Kozen,et al.  Results on the Propositional µ-Calculus , 1982, ICALP.

[4]  Matthew Hennessy,et al.  The Power of the Future Perfect in Program Logics , 1985, Inf. Control..

[5]  K. Larsen Context-dependent bisimulation between processes , 1986 .

[6]  Colin Stirling,et al.  Modal Logics for Communicating Systems , 1987, Theor. Comput. Sci..

[7]  Glynn Winskel,et al.  A compositional proof system for the modal /spl mu/-calculus , 1994, Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science.

[8]  Colin Sterling,et al.  A Complete Modal Proof System for a Subset of SCCS , 1985, TAPSOFT, Vol.1.

[9]  Rob J. van Glabbeek,et al.  The meaning of negative premises in transition system specifications II , 1996, J. Log. Algebraic Methods Program..

[10]  David Harel,et al.  Process logic: Expressiveness, decidability, completeness , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[11]  Gordon D. Plotkin,et al.  A structural approach to operational semantics , 2004, J. Log. Algebraic Methods Program..

[12]  Robin Milner,et al.  A Modal Characterisation of Observable Machine-Behaviour , 1981, CAAP.

[13]  Dexter Kozen,et al.  RESULTS ON THE PROPOSITIONAL’p-CALCULUS , 2001 .

[14]  Amir Pnueli,et al.  Now you may compose temporal logic specifications , 1984, STOC '84.

[15]  J.C.M. Baeten,et al.  CONCUR '90 Theories of Concurrency: Unification and Extension , 1990, Lecture Notes in Computer Science.

[16]  Jan Friso Groote,et al.  Transition System Specifications with Negative Premises , 1993, Theor. Comput. Sci..

[17]  Wan Fokkink,et al.  Precongruence formats for decorated trace semantics , 2002, TOCL.

[18]  G. Winskel,et al.  A Compositional Proof System for the Modal mu-Calculus , 1994 .

[19]  R. V. Glabbeek CHAPTER 1 – The Linear Time - Branching Time Spectrum I.* The Semantics of Concrete, Sequential Processes , 2001 .

[20]  Glynn Winskel,et al.  On the Compositional Checking of Validity (Extended Abstract) , 1990, CONCUR.

[21]  Xinxin Liu,et al.  Compositionality through an Operational Semantics of Contexts , 1990, J. Log. Comput..

[22]  C. A. R. Hoare,et al.  A Theory of Communicating Sequential Processes , 1984, JACM.

[23]  Amir Pnueli The Temporal Semantics of Concurrent Programs , 1981, Theor. Comput. Sci..

[24]  Colin Stirling,et al.  A Complete Compositional Model Proof System for a Subset of CCS , 1985, ICALP.

[25]  Robin Milner,et al.  Calculi for Synchrony and Asynchrony , 1983, Theor. Comput. Sci..

[26]  Robin Milner,et al.  A Calculus of Communicating Systems , 1980, Lecture Notes in Computer Science.

[27]  Robin Milner,et al.  Algebraic laws for nondeterminism and concurrency , 1985, JACM.

[28]  Glynn Winskel,et al.  Compositional checking of satisfaction , 1991, Formal Methods Syst. Des..

[29]  Colin Stirling A Proof-Theoretic Characterization of Observational Equivalence , 1985, Theor. Comput. Sci..