Chapter 3 Attractors for Dissipative Partial Differential Equations in Bounded and Unbounded Domains

Publisher Summary The study of the asymptotic behavior of dynamical systems arising from mechanics and physics is a capital issue because it is essential for practical applications to be able to understand and even predict the long time behavior of the solutions of such systems. A dynamical system is a (deterministic) system that evolves with respect to the time. Such a time evolution can be continuous or discrete (i.e., the state of the system is measured only at given times, for example, every hour or every day). The chapter essentially considers continuous dynamical systems. While the theory of attractors for dissipative dynamical systems in bounded domains is rather well understood, the situation is different for systems in unbounded domains and such a theory has only recently been addressed (and is still progressing), starting from the pioneering works of Abergel and Babin and Vishik. The main difficulty in this theory is the fact that, in contrast to the case of bounded domains discussed above, the dynamics generated by dissipative PDEs in unbounded domains is (as a rule) purely infinite dimensional and does not possess any finite dimensional reduction principle. In addition, the additional spatial “unbounded” directions lead to the so-called spatial chaos and the interactions between spatial and temporal chaotic modes generate a space–time chaos, which also has no analogue in finite dimensions.

[1]  B. Schmalfuß,et al.  Finite dimensionality of attractors for non-autonomous dynamical systems given by partial differenti , 2004 .

[2]  S. Zelik An attractor of a nonlinear system of reaction-diffusion equations in $$\mathbb{R}^n $$ and estimates of its ε-entropyand estimates of its ε-entropy , 1999 .

[3]  A. Miranville Finite dimensional global attractor for a class of doubly nonlinear parabolic equations , 2006 .

[4]  S. Zelik A trajectory attractor of a nonlinear elliptic system in an unbounded domain , 1996 .

[5]  John M. Ball,et al.  GLOBAL ATTRACTORS FOR DAMPED SEMILINEAR WAVE EQUATIONS , 2003 .

[6]  J. Cholewa,et al.  Asymptotic behavior and attractors for reaction diffusion equations in unbounded domains , 2004 .

[7]  Bixiang Wang,et al.  Global Attractors for the Klein–Gordon–Schrödinger Equation in Unbounded Domains , 2001 .

[8]  Structure formation in a zonal barotropic current: a treatment via the centre manifold reduction , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[9]  R. Devaney An Introduction to Chaotic Dynamical Systems , 1990 .

[10]  Tomasz W. Dłotko,et al.  Global Attractors in Abstract Parabolic Problems , 2000 .

[11]  Jack K. Hale,et al.  Infinite dimensional dynamical systems , 1983 .

[12]  Paul Manneville,et al.  Dissipative Structures and Weak Turbulence , 1995 .

[13]  S. Zelik SPATIALLY NONDECAYING SOLUTIONS OF THE 2D NAVIER-STOKES EQUATION IN A STRIP , 2007, Glasgow Mathematical Journal.

[14]  S. Zelik Attractors of reaction‐diffusion systems in unbounded domains and their spatial complexity , 2003 .

[15]  M. Efendiev,et al.  Continuous dependence on a parameter of exponential attractors for chemotaxis-growth system , 2005 .

[16]  A. Miranville,et al.  Infinite dimensional exponential attractors for a non–autonomous reaction–diffusion system , 2003 .

[17]  I. Procaccia,et al.  SCENARIO FOR THE ONSET OF SPACE-TIME CHAOS , 1998 .

[18]  Remarks on the navier-stokes equations on the two and three dimensional torus , 1994 .

[19]  Edriss S. Titi,et al.  An approximate inertial manifolds approach to postprocessing the Galerkin method for the Navier-Stokes equations , 1999, Math. Comput..

[20]  O. Goubet,et al.  Attractor for dissipative Zakharov system , 1998 .

[21]  O. Ladyzhenskaya,et al.  Attractors for Semigroups and Evolution Equations , 1991 .

[22]  M. Conti,et al.  Weakly dissipative semilinear equations of viscoelasticity , 2005 .

[23]  S. Zelik The Attractor for a Nonlinear Reaction-Diffusion System in the Unbounded Domain and Kolmogorove's ɛ-Entropy , 2001 .

[24]  S. Gatti,et al.  Robust exponential attractors for a family of nonconserved phase-field systems with memory , 2005 .

[25]  Alain Miranville,et al.  Memory relaxation of first order evolution equations , 2005 .

[26]  V. V. Chepyzhov,et al.  Attractors of non-autonomous dynamical systems and their dimension , 1994 .

[27]  E. Feireisl Asymptotic behaviour and attractors for a semilinear damped wave equation with supercritical exponent , 1995, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[28]  Navier–Stokes limit of Jeffreys type flows , 2005 .

[29]  Patrick D. Weidman,et al.  The dynamics of patterns , 2000 .

[30]  J. Eckmann,et al.  The definition and measurement of the topological entropy per unit volume in parabolic PDEs , 1999 .

[31]  H. H. Schaefer,et al.  Topological Vector Spaces , 1967 .

[32]  J. Solà-Morales,et al.  Existence and non-existence of finite-dimensional globally attracting invariant manifolds in semilinear damped wave equations , 1987 .

[33]  Masashi Aida,et al.  Quasilinear abstract parabolic evolution equations and exponential attractors , 2005 .

[34]  L. Peletier,et al.  Spatial Patterns: Higher Order Models in Physics and Mechanics , 2001 .

[35]  A. N. Kolmogorov,et al.  Selected Works of A.N. Kolmogorov , 1991 .

[36]  Attractors for the Klein-Gordon-Schrödinger equation , 1999 .

[37]  Explicit construction of integral manifolds with exponential tracking , 1998 .

[38]  S. Angenent The shadowing lemma for elliptic PDE , 1987 .

[39]  A. Yagi,et al.  Global Stability of Approximation for Exponential Attractors , 2004 .

[40]  A. Rougirel Convergence to steady state and attractors for doubly nonlinear equations , 2008 .

[41]  J. Hale,et al.  Limits of Semigroups Depending on Parameters , 1993 .

[42]  Hongqing Wu,et al.  Attractors for nonautonomous 2D Navier-Stokes equations with normal external forces , 2005 .

[43]  Alain Miranville,et al.  The dimension of the global attractor for dissipative reaction-diffusion systems , 2003, Appl. Math. Lett..

[44]  G. Sell,et al.  Navier-Stokes Equations in Thin 3D Domains III: Existence of a Global Attractor , 1993 .

[45]  Antonio Segatti,et al.  Global attractor for a class of doubly nonlinear abstract evolution equations , 2006 .

[46]  V. S. Melnik,et al.  Addendum to “On Attractors of Multivalued Semiflows and Differential Inclusions” [Set-Valued Anal., 6 (1998), 83–111] , 2008 .

[47]  S. Zelik Spatial and Dynamical Chaos Generated by Reaction–Diffusion Systems in Unbounded Domains , 2006 .

[48]  O. Goubet,et al.  Asymptotic Smoothing and the Global Attractor of a Weakly Damped KdV Equation on the Real Line , 2002 .

[49]  Chengkui Zhong,et al.  The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction–diffusion equations☆ , 2006 .

[50]  Multibump Solutions of a Semilinear Elliptic PDE on R n , 1993 .

[51]  Sergey Zelik,et al.  Robust exponential attractors for Cahn‐Hilliard type equations with singular potentials , 2004 .

[52]  Josef Málek,et al.  Large Time Behavior via the Method of ℓ-Trajectories , 2002 .

[53]  Sergey Zelik,et al.  Exponential attractors for the Cahn–Hilliard equation with dynamic boundary conditions , 2005 .

[54]  J. Málek,et al.  On the Dimension of the Global Attractor for the Modified Navier—Stokes Equations , 2002 .

[55]  Ricardo Rosa,et al.  The global attractor for the 2D Navier-Stokes flow on some unbounded domains , 1998 .

[56]  M. Vishik,et al.  Attractors of partial differential evolution equations in an unbounded domain , 1990, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[57]  A. Babin,et al.  The attractor of a Navier-Stokes system in an unbounded channel-like domain , 1992 .

[58]  R. Téman,et al.  Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations , 1988 .

[59]  R. Temam Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer Verlag , 1993 .

[60]  T. Tsujikawa,et al.  Exponential attractor for an adsorbate-induced phase transition model in non smooth domain , 2006 .

[61]  Lower bound on the dimension of the attractor for the Be´nard problem with free surfaces , 1995 .

[62]  A. Segatti ON THE HYPERBOLIC RELAXATION OF THE CAHN–HILLIARD EQUATION IN 3D: APPROXIMATION AND LONG TIME BEHAVIOUR , 2007 .

[63]  R. Temam Navier-Stokes Equations , 1977 .

[64]  V. Chepyzhov,et al.  On the fractal dimension of invariant sets; applications to Navier-Stokes equations. , 2003 .

[65]  Sergey Zelik,et al.  Well‐posedness and long time behavior of a parabolic‐hyperbolic phase‐field system with singular potentials , 2007 .

[66]  Shin-Ichiro Ei,et al.  The Motion of Weakly Interacting Pulses in Reaction-Diffusion Systems , 2002 .

[67]  Exponential attractors for a conserved phase-field system with memory☆ , 2004 .

[68]  R. Temam,et al.  Approximation of attractors by algebraic or analytic sets , 1994 .

[69]  Andrei Afendikovy,et al.  Bifurcation of Homoclinic Orbits to a Saddle-Focus in Reversible Systems with SO(2)-Symmetry , 1999 .

[70]  H. Crauel,et al.  Attractors for random dynamical systems , 1994 .

[71]  R. Temam,et al.  Modelling of the interaction of small and large eddies in two dimensional turbulent flows , 1988 .

[72]  Sergey Zelik,et al.  Finite‐dimensional attractors and exponential attractors for degenerate doubly nonlinear equations , 2009 .

[73]  A. Miranville Exponential attractors for a class of evolution equations by a decomposition method , 1999 .

[74]  Attractors of the reaction-diffusion systems with rapidly oscillating coefficients and their homogenization , 2002 .

[75]  Ricardo M. S. Rosa,et al.  Attractors for non-compact semigroups via energy equations , 1998 .

[76]  Sandro Merino,et al.  On the Existence of the Compact Global Attractor for Semilinear Reaction Diffusion Systems on RN , 1996 .

[77]  Convergence towards attractors for a degenerate Ginzburg-Landau equation , 2005 .

[78]  V. S. Melnik,et al.  On Attractors of Multivalued Semi-Flows and Differential Inclusions , 1998 .

[79]  C. Galusinski Existence and Continuity of Uniform Exponential Attractors of the Singularity Perturbed Hodgkin–Huxley System☆ , 1998 .

[80]  Alain Miranville,et al.  A construction of a robust family of exponential attractors , 2005 .

[81]  Dalibor Pražák,et al.  On Finite Fractal Dimension of the Global Attractor for the Wave Equation with Nonlinear Damping , 2002 .

[82]  M. Efendiev,et al.  The attractor for a nonlinear reaction‐diffusion system in an unbounded domain , 2001 .

[83]  P. Collet,et al.  The Definition and Measurement of the Topological Entropy per Unit Volume in Parabolic PDE's , 1998 .

[84]  A. Kolmogorov,et al.  Entropy and "-capacity of sets in func-tional spaces , 1961 .

[85]  Tomás Caraballo,et al.  Pullback attractors for non-autonomous 2D-Navier–Stokes equations in some unbounded domains , 2006 .

[86]  Xiaoming Wang,et al.  Attractors for noncompact nonautonomous systems via energy equations , 2003 .

[87]  Trajectory attractors for the 2D Navier-Stokes system and some generalizations , 1996 .

[88]  Basil Nicolaenko,et al.  Exponential Attractors in Banach Spaces , 2001 .

[89]  Bjorn Schmalfuss ATTRACTORS FOR THE NON–AUTONOMOUS DYNAMICAL SYSTEMS , 2000 .

[90]  S. Hassi,et al.  Oper. Theory Adv. Appl. , 2006 .

[91]  G. Sell Global attractors for the three-dimensional Navier-Stokes equations , 1996 .

[92]  Sergey Zelik,et al.  A result on the existence of global attractors for semigroups of closed operators , 2007 .

[93]  GLOBAL ATTRACTOR OF NONLINEAR STRAIN WAVES IN ELASTIC WAVEGUIDES , 2000 .

[94]  Igor Chueshov,et al.  Attractors for Second-Order Evolution Equations with a Nonlinear Damping , 2004 .

[95]  J. Barrow-Green Poincare and the Three Body Problem , 1996 .

[96]  S. Siegmund,et al.  Pullback Attracting Inertial Manifolds for Nonautonomous Dynamical Systems , 2002 .

[97]  Daomin Cao,et al.  Non-autonomous dynamics of wave equations with nonlinear damping and critical nonlinearity , 2006, math/0607774.

[98]  E. Olson,et al.  Finite fractal dimension and Holder-Lipshitz parametrization , 1996 .

[99]  José A. Langa,et al.  Bifurcation from Zero of a Complete Trajectory for nonautonomous logistic PDEs , 2005, Int. J. Bifurc. Chaos.

[100]  Finite dimensional behavior of periodic and asymptotically periodic processes , 1997 .

[101]  D. Pražák,et al.  Differentiability of the solution operator and the dimension of the attractor for certain power–law fluids , 2007 .

[102]  Alain Miranville,et al.  HYPERBOLIC RELAXATION OF THE VISCOUS CAHN–HILLIARD EQUATION IN 3-D , 2005 .

[103]  Vittorino Pata,et al.  On the Strongly Damped Wave Equation , 2005 .

[104]  A. Miranville,et al.  ROBUST EXPONENTIAL ATTRACTORS FOR SINGULARLY PERTURBED PHASE-FIELD TYPE EQUATIONS , 2002 .

[105]  J. Ghidaglia A Note on the Strong Convergence towards Attractors of Damped Forced KdV Equations , 1994 .

[106]  A. Mielke,et al.  Infinite-Dimensional Hyperbolic Sets and Spatio-Temporal Chaos in Reaction Diffusion Systems in $${\mathbb{R}^{n}}$$ , 2007 .

[107]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[108]  I. Moise,et al.  On the regularity of the global attractor of a weakly damped, forced Korteweg-de Vries equation , 1997, Advances in Differential Equations.

[109]  Topological Entropy and ε-Entropy for Damped Hyperbolic Equations , 1999, math/9908080.

[110]  Josef Málek,et al.  A Finite-Dimensional Attractor for Three-Dimensional Flow of Incompressible Fluids , 1996 .

[111]  Brian R. Hunt,et al.  Regularity of embeddings of infinite-dimensional fractal sets into finite-dimensional spaces , 1999 .

[112]  Benjamin Weiss,et al.  Mean topological dimension , 2000 .

[113]  P. Fabrie,et al.  Exponential attractors for the slightly compressible 2D-Navier-Stokes , 1996 .

[114]  Kenneth Falconer,et al.  Fractal Geometry: Mathematical Foundations and Applications , 1990 .

[115]  S. Gatti,et al.  Asymptotic behavior of a phase-field system with dynamic boundary conditions , 2006 .

[116]  Сергей Витальевич Зелик,et al.  Регулярный аттрактор нелинейной эллиптической системы в цилиндрической области@@@Regular attractor for a non-linear elliptic system in a cylindrical domain , 1999 .

[117]  Vittorino Pata,et al.  Singular limit of differential systems with memory , 2006 .

[118]  Sergey Zelik,et al.  Exponential attractors for a singularly perturbed Cahn‐Hilliard system , 2004 .

[119]  Sergey Zelik,et al.  Exponential attractors for a nonlinear reaction-diffusion system in ? , 2000 .

[120]  Memory relaxation of the one-dimensional Cahn-Hilliard equation , 2006 .

[121]  S. Zelik The attractor for a nonlinear hyperbolic equation in the unbounded domain , 2001 .

[122]  Sergey Zelik,et al.  Multi-Pulse Evolution and Space-Time Chaos in Dissipative Systems , 2009 .

[123]  A. Miranville,et al.  Finite dimensional attractors for reaction-diffusion equations in $R^n$ with a strong nonlinearity , 1999 .

[124]  V. Chepyzhov,et al.  Evolution equations and their trajectory attractors , 1997 .

[125]  Philip Holmes,et al.  Spatially complex equilibria of buckled rods , 1988 .

[126]  G. Sell,et al.  Dynamics of Evolutionary Equations , 2002 .

[127]  Alex Mahalov,et al.  Regularity and integrability of 3D Euler and Navier–Stokes equations for rotating fluids , 1997 .

[128]  T. Gallay,et al.  Energy Flow in Formally Gradient Partial Differential Equations on Unbounded Domains , 2001 .

[129]  A. Babin ATTRACTOR OF THE GENERALIZED SEMIGROUP GENERATED BY AN ELLIPTIC EQUATION IN A CYLINDRICAL DOMAIN , 1995 .

[130]  D. Pražák A necessary and sufficient condition for the existence of an exponential attractor , 2003 .

[131]  Vittorino Pata,et al.  SINGULAR LIMIT OF DISSIPATIVE HYPERBOLIC EQUATIONS WITH MEMORY , 2005 .

[132]  川口 光年,et al.  O. A. Ladyzhenskaya: The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach Sci. Pub. New York-London, 1963, 184頁, 15×23cm, 3,400円. , 1964 .

[133]  A. Babin Chapter 14 - Global Attractors in PDE , 2006 .

[134]  A. Mielke,et al.  Multi-pulse solutions to the Navier-Stokes problem between parallel plates , 2001 .

[135]  I. N. Kostin Rate of attraction to a non‐hyperbolic attractor , 1998 .

[136]  Perturbation of trajectory attractors for dissipative hyperbolic equations , 1999 .

[137]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[138]  A. Mielke The complex Ginzburg - Landau equation on large and unbounded domains: sharper bounds and attractors , 1997 .

[139]  A. Miranville,et al.  Global and exponential attractors for nonlinear reaction–diffusion systems in unbounded domains , 2004, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[140]  F. Abergel Existence and finite dimensionality of the global attractor for evolution equations on unbounded domains , 1990 .

[141]  Shengfan Zhou,et al.  Kernel sections and uniform attractors of multi-valued semiprocesses☆ , 2007 .

[142]  O. Ladyzhenskaya On the determination of minimal global attractors for the Navier-Stokes and other partial differential equations , 1987 .

[143]  Giulio Schimperna,et al.  Attractors for the semiflow associated with a class of doubly nonlinear parabolic equations , 2008, Asymptot. Anal..

[144]  SPATIAL CHAOTIC STRUCTURE OF ATTRACTORS OF REACTION-DIFFUSION SYSTEMS , 1996 .

[145]  Cone invariance and squeezing properties for inertial manifolds for nonautonomous evolution equations , 2003 .

[146]  G. Whitham Research in Applied Mathematics. , 1988 .

[147]  R. Temam,et al.  Inertial manifolds and normal hyperbolicity , 1996 .

[148]  T. Caraballo,et al.  ON THE UPPER SEMICONTINUITY OF COCYCLE ATTRACTORS FOR NON-AUTONOMOUS AND RANDOM DYNAMICAL SYSTEMS , 2003 .

[149]  Space-time chaos in the system of weakly interacting hyperbolic systems , 1988 .

[150]  Josef Málek,et al.  On the dimension of the attractor for a class of fluids with pressure dependent viscosities , 2005 .

[151]  Bixiang Wang,et al.  Attractors for reaction-diffusion equations in unbounded domains , 1999 .

[152]  Boris Hasselblatt,et al.  Handbook of Dynamical Systems , 2010 .

[153]  A. Miranville,et al.  Infinite-dimensional exponential attractors for nonlinear reaction-diffusion systems in unbounded domains and their approximation , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[154]  A. Eden,et al.  Exponential Attractors for Dissipative Evolution Equations , 1995 .

[155]  John W. Milnor,et al.  On the Entropy Geometry of Cellular Automata , 1988, Complex Syst..

[156]  B. Fiedler,et al.  Connecting orbits in scalar reaction diffusion equations , 1988 .

[157]  K. Kirchgässner Wave-solutions of reversible systems and applications , 1982 .

[158]  Guido Schneider,et al.  Attractors for modulation equations on unbounded domains-existence and comparison , 1995 .

[159]  A. Biryuk Spectral Properties of Solutions of the Burgers Equation with Small Dissipation , 2001 .

[160]  G. Sell,et al.  Inertial manifolds for nonlinear evolutionary equations , 1988 .

[161]  Peter E. Kloeden,et al.  PULLBACK AND FORWARD ATTRACTORS FOR A DAMPED WAVE EQUATION WITH DELAYS , 2004 .

[162]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[163]  Valentin Afraimovich,et al.  Topological properties of linearly coupled expanding map lattices , 2000 .

[164]  Сергей Витальевич Зелик,et al.  Траекторный аттрактор нелинейной эллиптической системы в цилиндрической области@@@The trajectory attractor of a non-linear elliptic system in a cylindrical domain , 1996 .

[165]  A. Miranville,et al.  Finite-dimensionality of attractors for degenerate equations of elliptic–parabolic type , 2007 .

[166]  Alain Miranville,et al.  On the hyperbolic relaxation of the one-dimensional Cahn–Hilliard equation☆ , 2005 .

[167]  Yejuan Wang,et al.  Pullback attractors of nonautonomous dynamical systems , 2006 .

[168]  Alexander Mielke,et al.  The Ginzburg-Landau Equation in Its Role as a Modulation Equation , 2002 .

[169]  Bernold Fiedler,et al.  Orbit equivalence of global attractors of semilinear parabolic differential equations , 1999 .

[170]  A. Mielke,et al.  Infinite-dimensional trajectory attractors of elliptic boundary-value problems in cylindrical domains , 2002 .

[172]  M. Vishik,et al.  Attractors of Evolution Equations , 1992 .

[173]  T. Caraballo,et al.  Pullback Attractors of Nonautonomous and Stochastic Multivalued Dynamical Systems , 2003 .

[174]  B. Fiedler,et al.  Connecting orbits in scalar reaction diffusion equations II. The complete solution , 1989 .

[175]  Riccarda Rossi,et al.  Attractors for Gradient Flows of Nonconvex Functionals and Applications , 2007, 0705.4531.

[176]  Global attractor for the weakly damped driven Schrödinger equation in $ H^2 (\mathbb{R}) $ , 2002 .

[177]  R. A. Silverman,et al.  The Mathematical Theory of Viscous Incompressible Flow , 1972 .

[178]  A. Haraux,et al.  Systèmes dynamiques dissipatifs et applications , 1991 .

[179]  B. Sandstede,et al.  Chapter 18 - Stability of Travelling Waves , 2002 .

[180]  A. Mielke Essential Manifolds for an Elliptic Problem in an Infinite Strip , 1994 .

[181]  Pablo Amster,et al.  Existence of Solutions for Elliptic Systems with Critical Sobolev Exponent , 2002 .

[182]  Sergey Zelik,et al.  Uniform exponential attractors for a singularly perturbed damped wave equation , 2003 .

[183]  L. Bunimovich,et al.  Stable chaotic waves generated by hyperbolic PDEs , 1996 .

[184]  Songsong Lu Attractors for nonautonomous 2D Navier–Stokes equations with less regular normal forces☆ , 2006 .

[185]  Bixiang Wang Regularity of attractors for the Benjamin-Bona-Mahony equation , 1998 .

[186]  D. E. Smith,et al.  History of Mathematics , 1924, Nature.

[187]  P. Bergé,et al.  L'ordre dans le chaos. , 1984 .

[188]  Igor Chueshov,et al.  Finite Dimensionality of the Attractor for a Semilinear Wave Equation with Nonlinear Boundary Dissipation , 2005 .

[189]  Chengkui Zhong,et al.  Necessary and sufficient conditions for the existence of global attractors for semigroups and applications , 2002 .

[190]  Asymptotic behaviour and attractors for degenerate parabolic equations on unbounded domains , 1996 .

[191]  P. Fabrie,et al.  Exponential attractors for a partially dissipative reaction system , 1996 .

[192]  B. Nicolaenko,et al.  Exponential attractors of reaction-diffusion systems in an unbounded domain , 1995 .

[193]  V. Chepyzhov,et al.  Kolmogorov $ \varepsilon$-entropy estimates for the uniform attractors of non-autonomous reaction-diffusion systems , 1998 .

[194]  V. Pata,et al.  Global and exponential attractors for 3‐D wave equations with displacement dependent damping , 2006 .

[195]  E. Boschi Recensioni: J. L. Lions - Quelques méthodes de résolution des problémes aux limites non linéaires. Dunod, Gauthier-Vi;;ars, Paris, 1969; , 1971 .

[196]  B. Hunt Prevalence: a translation-invariant “almost every” on infinite-dimensional spaces , 1992, math/9210220.

[197]  B. Fiedler,et al.  Realization of Meander Permutations by Boundary Value Problems , 1999 .

[198]  O. Rössler An equation for continuous chaos , 1976 .

[199]  J. Hale Asymptotic Behavior of Dissipative Systems , 1988 .

[200]  T. Caraballo,et al.  The dimension of attractors of nonautonomous partial differential equations , 2003, The ANZIAM Journal.

[201]  J. Craggs Applied Mathematical Sciences , 1973 .

[202]  Boris Hasselblatt,et al.  Introduction to the Modern Theory of Dynamical Systems: INTRODUCTION: WHAT IS LOW-DIMENSIONAL DYNAMICS? , 1995 .

[203]  Sergey Zelik,et al.  Asymptotic regularity of solutions of singularly perturbed damped wave equations with supercritical nonlinearities , 2004 .

[204]  A. Babin Inertial manifolds for travelling‐wave solutions of reaction‐diffusion systems , 1995 .

[205]  M. Vishik,et al.  Unstable invariant sets of semigroups of non-linear operators and their perturbations , 1986 .

[206]  O. Goubet Asymptotic smoothing effect for weakly damped forced Korteweg-de Vries equations , 2000 .

[207]  Sergey Zelik,et al.  Exponential attractors and finite-dimensional reduction for non-autonomous dynamical systems* , 2005, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[208]  John M. Ball,et al.  Erratum to: Continuity Properties and Global Attractors of Generalized Semiflows and the Navier-Stokes Equations , 1997 .

[209]  Leonid A. Bunimovich,et al.  Spacetime chaos in coupled map lattices , 1988 .

[210]  J. Cholewa,et al.  Strongly damped wave equation in uniform spaces , 2006 .

[211]  Xiaoming Wang,et al.  An energy equation for the weakly damped driven nonlinear Schro¨dinger equations and its application to their attractors , 1995 .

[212]  Y. Sinai,et al.  Space-time chaos in chains of weakly interacting hyperbolic mappings , 1991 .

[213]  On global attractors of the 3D Navier-Stokes equations , 2006, math/0608475.

[214]  A. Babin Topological Invariants and Solutions with a High Complexity for Scalar Semilinear PDE , 2000 .

[215]  Vincent Liu A sharp lower bound for the Hausdorff dimension of the global attractors of the 2D Navier-Stokes equations , 1993 .

[216]  M. Efendiev,et al.  Upper and Lower Bounds for the Kolmogorov Entropy of the Attractor for the RDE in an Unbounded Domain , 2002 .

[217]  P. Kloeden PULLBACK ATTRACTORS OF NONAUTONOMOUS SEMIDYNAMICAL SYSTEMS , 2003 .

[218]  Desheng Li,et al.  On the dynamics of nonautonomous periodic general dynamical systems and differential inclusions , 2006 .

[219]  Extensive Properties of the Complex Ginzburg–Landau Equation , 1998, chao-dyn/9802006.

[220]  Сергей Витальевич Зелик,et al.  Аттрактор нелинейной системы уравнений реакции-диффузии в $\mathbb R^n$ и оценки его $\varepsilon$-энтропии@@@An attractor of a nonlinear system of reaction-diffusion equations in $\mathbb R^n$ and estimates for its $\epsilon$-entropy , 1999 .

[221]  O. Ladyzhenskaya Attractors of nonlinear evolution problems with dissipation , 1988 .