Advanced drug delivery systems: Nanotechnology of health design A review

Abstract Nanotechnology has finally and firmly entered the realm of drug delivery. Performances of intelligent drug delivery systems are continuously improved with the purpose to maximize therapeutic activity and to minimize undesirable side-effects. This review describes the advanced drug delivery systems based on micelles, polymeric nanoparticles, and dendrimers. Polymeric carbon nanotubes and many others demonstrate a broad variety of useful properties. This review emphasizes the main requirements for developing new nanotech-nology-based drug delivery systems.

[1]  J. Storhoff,et al.  A DNA-based method for rationally assembling nanoparticles into macroscopic materials , 1996, Nature.

[2]  Charles L. Wilkins,et al.  Double Exponential Dendrimer Growth , 1995 .

[3]  C. Pan,et al.  Covalently Immobilizing a Biological Molecule onto a Carbon Nanotube via a Stimuli-Sensitive Bond , 2007 .

[4]  M. Prato,et al.  Carbon nanotube cell translocation and delivery of nucleic acids in vitro and in vivo , 2008 .

[5]  C. Brinker,et al.  Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing , 1990 .

[6]  S. Armes,et al.  Unusual Aggregation Behavior of a Novel Tertiary Amine Methacrylate-Based Diblock Copolymer: Formation of Micelles and Reverse Micelles in Aqueous Solution , 1998 .

[7]  T. Webb,et al.  Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. , 2003, Toxicological sciences : an official journal of the Society of Toxicology.

[8]  H. Olin,et al.  Carbon nanomaterials as drug carriers: Real time drug release investigation , 2012 .

[9]  M. Vallet‐Regí,et al.  A New Property of MCM-41: Drug Delivery System , 2001 .

[10]  T. Yasin,et al.  Controlled delivery of drug from pH sensitive chitosan/poly (vinyl alcohol) blend , 2012 .

[11]  Shiling Yuan,et al.  Mesoscale simulation on patterned core–shell nanosphere model for amphiphilic block copolymer , 2011 .

[12]  C. van Nostrum,et al.  Triggered destabilisation of polymeric micelles and vesicles by changing polymers polarity: an attractive tool for drug delivery. , 2007, Journal of Controlled Release.

[13]  Ya‐Ping Sun,et al.  High aqueous solubility of functionalized single-walled carbon nanotubes. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[14]  S. Jain,et al.  A PEGylated dendritic nanoparticulate carrier of fluorouracil. , 2003, International journal of pharmaceutics.

[15]  James M Tour,et al.  Overcoming the insolubility of carbon nanotubes through high degrees of sidewall functionalization. , 2004, Chemistry.

[16]  M. Adeli,et al.  Dendrimers of citric acid and poly (ethylene glycol) as the new drug-delivery agents. , 2005, Biomaterials.

[17]  Daniel Cohn,et al.  Improved reverse thermo-responsive polymeric systems. , 2003, Biomaterials.

[18]  L. Bronstein,et al.  Dendrimers as encapsulating, stabilizing, or directing agents for inorganic nanoparticles. , 2011, Chemical reviews.

[19]  M. Adeli,et al.  Solution proprieties of dendritic triazine/poly(ethylene glycol)/dendritic triazine block copolymers , 2005 .

[20]  Ajay Kumar Gupta,et al.  Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. , 2005, Biomaterials.

[21]  L. Bergström,et al.  Colloidal aspects relating to direct incorporation of TiO2 nanoparticles into mesoporous spheres by an aerosol-assisted process. , 2008, Journal of colloid and interface science.

[22]  D. S. Lee,et al.  Synthesis and evaluation of biotin-conjugated pH-responsive polymeric micelles as drug carriers. , 2012, International journal of pharmaceutics.

[23]  C. Nicolini,et al.  Mechanism of Conjugated Polymer Organization on SWNT Surfaces , 2005 .

[24]  J. Misewich,et al.  Functionalized carbon nanotubes for detecting viral proteins. , 2007, Nano letters.

[25]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[26]  K. Hidajat,et al.  Functionalized SBA-15 materials as carriers for controlled drug delivery: influence of surface properties on matrix-drug interactions. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[27]  E. Longo,et al.  Growth kinetics of tin oxide nanocrystals in colloidal suspensions under hydrothermal conditions , 2006 .

[28]  J. Niazi,et al.  An aptamer based competition assay for protein detection using CNT activated gold-interdigitated capacitor arrays. , 2012, Biosensors & bioelectronics.

[29]  K. Siewiera,et al.  Ambiguous effect of dendrimer PAMAM G3 on rat heart respiration in a model of an experimental diabetes - Objective causes of laboratory misfortune or unpredictable G3 activity? , 2012, International journal of pharmaceutics.

[30]  Xian‐Zheng Zhang,et al.  Nanosized temperature-responsive Fe3O4-UA-g-P(UA-co-NIPAAm) magnetomicelles for controlled drug release , 2008 .

[31]  S. Feng,et al.  Preparation and characterization of poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid) (PLA-PEG-PLA) microspheres for controlled release of paclitaxel. , 2003, Biomaterials.

[32]  William A. Goddard,et al.  Starburst Dendrimers: Molecular‐Level Control of Size, Shape, Surface Chemistry, Topology, and Flexibility from Atoms to Macroscopic Matter , 1990 .

[33]  Philippe Dubois,et al.  From controlled ring-opening polymerization to biodegradable aliphatic polyester: Especially poly(β-malic acid) derivatives , 2006 .

[34]  A. Hult,et al.  Double-Stage Convergent Approach for the Synthesis of Functionalized Dendritic Aliphatic Polyesters Based on 2,2-Bis(hydroxymethyl)propionic Acid , 1998 .

[35]  F. Atyabi,et al.  Carbon nanotubes-graft-polyglycerol: Biocompatible hybrid materials for nanomedicine , 2009 .

[36]  M. Adeli,et al.  Linear-Dendritic ABA Triblock Copolymers as Nanocarriers , 2007 .

[37]  M. Nowakowska,et al.  Response of micelles formed by smart terpolymers to stimuli studied by dynamic light scattering , 2003 .

[38]  J. Fraser Stoddart,et al.  Preparation and Properties of Polymer-Wrapped Single-Walled Carbon Nanotubes , 2001 .

[39]  J. S. Beck,et al.  Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism , 1992, Nature.

[40]  D. Appelhans,et al.  The influence of maltose modified poly(propylene imine) dendrimers on hen egg white lysozyme structure and thermal stability. , 2012, Colloids and surfaces. B, Biointerfaces.

[41]  Lihong Liu,et al.  Modern methods for delivery of drugs across the blood-brain barrier. , 2012, Advanced drug delivery reviews.

[42]  H. Dai,et al.  Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into Mammalian cells. , 2004, Journal of the American Chemical Society.

[43]  T. Imae,et al.  Network of sodium hyaluronate with nano-knots junction of poly(amido amine) dendrimer , 2012 .

[44]  K. Soppimath,et al.  pH‐Triggered Thermally Responsive Polymer Core–Shell Nanoparticles for Drug Delivery , 2005 .

[45]  Feng-sheng Li,et al.  Preparation and mechanism of magnetic carbonaceous polysaccharide microspheres by low-temperature hydrothermal method , 2011 .

[46]  Yi-Tao Liu,et al.  Synthesis of hyperbranched aromatic polyamide–imide and its grafting onto multiwalled carbon nanotubes , 2007 .

[47]  L. Costantino,et al.  Is there a clinical future for polymeric nanoparticles as brain-targeting drug delivery agents? , 2012, Drug discovery today.

[48]  K. Ulbrich,et al.  Polymeric micellar pH-sensitive drug delivery system for doxorubicin. , 2005, Journal of controlled release : official journal of the Controlled Release Society.

[49]  M. Pileni Nanocrystals forming mesoscopic structures , 2005 .

[50]  N. Sahiner,et al.  One-step fabrication of biocompatible carboxymethyl cellulose polymeric particles for drug delivery systems , 2011 .

[51]  D. Williams,et al.  The Williams Dictionary of Biomaterials: L , 1999 .

[52]  N. Tsubokawa Preparation and Properties of Polymer-grafted Carbon Nanotubes and Nanofibers , 2005 .

[53]  T. Xu,et al.  Pharmaceutical applications of dendrimers: promising nanocarriers for drug delivery. , 2008, Frontiers in bioscience : a journal and virtual library.

[54]  M. Kishida,et al.  Novel preparation of metal-supported catalysts by colloidal microparticles in a water-in-oil microemulsion; catalytic hydrogenation of carbon dioxide , 1995 .

[55]  D. Resasco,et al.  Polymer brushes on single-walled carbon nanotubes by atom transfer radical polymerization of n-butyl methacrylate. , 2004, Journal of the American Chemical Society.

[56]  Afsaneh Lavasanifar,et al.  Engineering of amphiphilic block copolymers for polymeric micellar drug and gene delivery. , 2011, Journal of controlled release : official journal of the Controlled Release Society.

[57]  Gilbert C Walker,et al.  Noncovalent engineering of carbon nanotube surfaces by rigid, functional conjugated polymers. , 2002, Journal of the American Chemical Society.

[58]  Qiang Zhang,et al.  The efficiency of tumor-specific pH-responsive peptide-modified polymeric micelles containing paclitaxel. , 2012, Biomaterials.

[59]  S. Parveen,et al.  Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. , 2012, Nanomedicine : nanotechnology, biology, and medicine.

[60]  M. Brechbiel,et al.  Biodistribution of a 153Gd-Folate Dendrimer, Generation = 4, in Mice With Folate-Receptor Positive and Negative Ovarian Tumor Xenografts , 2002, Investigative radiology.

[61]  J. Devoisselle,et al.  The potential of ordered mesoporous silica for the storage of drugs: the example of a pentapeptide encapsulated in a MSU-tween 80. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[62]  Kaushal Rege,et al.  Inorganic nanoparticles for cancer imaging and therapy. , 2011, Journal of controlled release : official journal of the Controlled Release Society.

[63]  Ick Chan Kwon,et al.  Hydrophobically modified glycol chitosan nanoparticles as carriers for paclitaxel. , 2006, Journal of controlled release : official journal of the Controlled Release Society.

[64]  Juan L. Vivero-Escoto,et al.  Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. , 2008, Advanced drug delivery reviews.

[65]  Michael J Sailor,et al.  Micellar hybrid nanoparticles for simultaneous magnetofluorescent imaging and drug delivery. , 2008, Angewandte Chemie.

[66]  Some new aspects of dendrimer applications , 2004, cond-mat/0410436.

[67]  Bin He,et al.  Polyethyleneimine/DNA polyplexes with reduction-sensitive hyaluronic acid derivatives shielding for targeted gene delivery. , 2013, Biomaterials.

[68]  M. Adeli,et al.  Encapsulation of nanoparticles using linear–dendritic macromolecules , 2007 .

[69]  D. Schmaljohann Thermo- and pH-responsive polymers in drug delivery. , 2006, Advanced drug delivery reviews.

[70]  Leon Hirsch,et al.  Gold nanoshell bioconjugates for molecular imaging in living cells. , 2005, Optics letters.

[71]  E. J. Crosby,et al.  Evaporation and drying of drops in superheated vapors , 1970 .

[72]  Xu Tongwen,et al.  Dendrimers as potential drug carriers. Part I. Solubilization of non-steroidal anti-inflammatory drugs in the presence of polyamidoamine dendrimers. , 2005, European journal of medicinal chemistry.

[73]  M. Prato,et al.  Translocation of bioactive peptides across cell membranes by carbon nanotubes. , 2004, Chemical communications.

[74]  C. Jérôme,et al.  Functional amphiphilic and biodegradable copolymers for intravenous vectorisation , 2007 .

[75]  Dirk M Guldi,et al.  Multifunctional molecular carbon materials--from fullerenes to carbon nanotubes. , 2006, Chemical Society reviews.

[76]  Jongdoo Lim,et al.  Triazine dendrimers as drug delivery systems: from synthesis to therapy. , 2012, Advanced drug delivery reviews.

[77]  K. Kataoka,et al.  Block copolymer micelles for drug delivery: design, characterization and biological significance. , 2001, Advanced drug delivery reviews.

[78]  Priyabrata Mukherjee,et al.  Biological properties of "naked" metal nanoparticles. , 2008, Advanced drug delivery reviews.

[79]  K. Balasubramanian,et al.  Chemically functionalized carbon nanotubes. , 2005, Small.

[80]  N. K. Jain,et al.  PEGylated PPI dendritic architectures for sustained delivery of H2 receptor antagonist. , 2009, European journal of medicinal chemistry.

[81]  Philippe Robert,et al.  Recent advances in iron oxide nanocrystal technology for medical imaging. , 2006, Advanced drug delivery reviews.

[82]  M. Adeli,et al.  CARBON NANOTUBE-GRAFT-POLY(CITRIC ACID) NANOCOMPOSITES , 2008 .

[83]  Yubo Fan,et al.  Biomedical investigation of CNT based coatings , 2011 .

[84]  Xianghui Xu,et al.  Anti-tumor drug delivery of pH-sensitive poly(ethylene glycol)-poly(L-histidine-)-poly(L-lactide) nanoparticles. , 2011, Journal of controlled release : official journal of the Controlled Release Society.

[85]  Weizhen Zeng,et al.  Organic modified mesoporous MCM-41 through solvothermal process as drug delivery system , 2005 .

[86]  Yechezkel Barenholz,et al.  Carbon nanotubes-liposomes conjugate as a platform for drug delivery into cells. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[87]  M. Hartmann Ordered Mesoporous Materials for Bioadsorption and Biocatalysis , 2005 .

[88]  Crosslinkable PEO-PPO-PEO triblocks as building blocks of thermo-responsive nanoshells , 2011 .

[89]  S. Sahu,et al.  Controlling the thickness of polymeric shell on magnetic nanoparticles loaded with doxorubicin for targeted delivery and MRI contrast agent , 2012 .

[90]  Hongmei Wu,et al.  Short multi-armed polylysine-graft-polyamidoamine copolymer as efficient gene vectors. , 2011, International journal of pharmaceutics.

[91]  Y. Mai,et al.  Controlled Synthesis and Novel Solution Rheology of Hyperbranched Poly(urea−urethane)-Functionalized Multiwalled Carbon Nanotubes , 2007 .

[92]  Yuexian Liu,et al.  Anti-tumor activity of paclitaxel through dual-targeting carrier of cyclic RGD and transferrin conjugated hyperbranched copolymer nanoparticles. , 2012, Biomaterials.

[93]  Yitao Wang,et al.  Polymeric micelles drug delivery system in oncology. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[94]  D. Begley,et al.  Albumin nanoparticles targeted with Apo E enter the CNS by transcytosis and are delivered to neurones. , 2009, Journal of controlled release : official journal of the Controlled Release Society.

[95]  T. Xu,et al.  Targeting cancer cells with biotin-dendrimer conjugates. , 2009, European journal of medicinal chemistry.

[96]  Y. Kuo,et al.  Effect of nanoparticulate polybutylcyanoacrylate and methylmethacrylate-sulfopropylmethacrylate on the permeability of zidovudine and lamivudine across the in vitro blood-brain barrier. , 2006, International journal of pharmaceutics.

[97]  V. Colvin The potential environmental impact of engineered nanomaterials , 2003, Nature Biotechnology.

[98]  C. Larabell,et al.  Quantum dots as cellular probes. , 2005, Annual review of biomedical engineering.

[99]  Nicholas A Peppas,et al.  Micro- and nanotechnologies for intelligent and responsive biomaterial-based medical systems. , 2009, Advanced drug delivery reviews.

[100]  Sibdas Singha Mahapatra,et al.  Silver nanoparticle in hyperbranched polyamine : Synthesis, characterization and antibacterial activity , 2008 .

[101]  Catherine J. Murphy,et al.  Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods , 2001 .

[102]  Dennis E. Discher,et al.  Polymer vesicles : Materials science: Soft surfaces , 2002 .

[103]  Allan S. Hoffman,et al.  Applications of thermally reversible polymers and hydrogels in therapeutics and diagnostics , 1987 .

[104]  Y. Bae,et al.  Thermosensitive sol-gel reversible hydrogels. , 2002, Advanced drug delivery reviews.

[105]  P. Tran,et al.  Carbon nanofibers and carbon nanotubes in regenerative medicine. , 2009, Advanced drug delivery reviews.

[106]  Jianwen Jiang,et al.  pH-sensitive drug loading/releasing in amphiphilic copolymer PAE-PEG: integrating molecular dynamics and dissipative particle dynamics simulations. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[107]  M. Vallet‐Regí,et al.  Phosphorous-doped MCM-41 as bioactive material , 2005 .

[108]  A. Díez-Pascual,et al.  Grafting of an aminated poly(phenylene sulphide) derivative to functionalized single-walled carbon nanotubes , 2012 .

[109]  L. Matherly,et al.  Activity of dendrimer-methotrexate conjugates on methotrexate-sensitive and -resistant cell lines. , 2006, Bioconjugate chemistry.

[110]  J. Salonen,et al.  Use of thermoanalytical methods in quantification of drug load in mesoporous silicon microparticles , 2005 .

[111]  T. Xu,et al.  Dendrimer-based prodrugs: design, synthesis, screening and biological evaluation. , 2007, Combinatorial chemistry & high throughput screening.

[112]  Haoshen Zhou,et al.  A New Metastable Phase of Crystallized V2O4·0.25H2O Nanowires: Synthesis and Electrochemical Measurements , 2005 .

[113]  G. Barratt,et al.  Colloidal drug carriers: achievements and perspectives , 2003, Cellular and Molecular Life Sciences CMLS.

[114]  H. Dai,et al.  Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[115]  Yufang Zhu,et al.  Hollow mesoporous spheres with cubic pore network as a potential carrier for drug storage and its in vitro release kinetics , 2005 .

[116]  M. Zachariah,et al.  Multiphoton ionization spectroscopy measurements of silicon atoms during vapor‐phase synthesis of ceramic particles , 1990 .

[117]  K. Kono,et al.  Water-soluble dendrimer-poly(ethylene glycol) starlike conjugates as potential drug carriers , 1999 .

[118]  Elazer R. Edelman,et al.  Adv. Drug Delivery Rev. , 1997 .

[119]  A. Salgado,et al.  Dendrimers and derivatives as a potential therapeutic tool in regenerative medicine strategies—A review , 2010 .

[120]  Kazunori Kataoka,et al.  Smart polymeric micelles for gene and drug delivery. , 2005, Drug discovery today. Technologies.

[121]  Feng Min,et al.  Micelle-like nanoparticles of star-branched PEO-PLA copolymers as chemotherapeutic carrier. , 2005, Journal of controlled release : official journal of the Controlled Release Society.

[122]  Jae Won Lee,et al.  pH-responsive polymeric micelle based on PEG-poly(β-amino ester)/(amido amine) as intelligent vehicle for magnetic resonance imaging in detection of cerebral ischemic area. , 2011, Journal of controlled release : official journal of the Controlled Release Society.

[123]  Igor L. Medintz,et al.  Multiplexed toxin analysis using four colors of quantum dot fluororeagents. , 2004, Analytical chemistry.

[124]  Patrick A. Cooke,et al.  Molecular Characterization of the Cytotoxic Mechanism of Multiwall Carbon Nanotubes and Nano-onions on Human Skin Fibroblast , 2005 .

[125]  Sally Freeman,et al.  Synthesis, characterization and stability of dendrimer prodrugs. , 2006, International journal of pharmaceutics.

[126]  Chang-Qing Ruan,et al.  Heparin-doped affinity electromembranes for thrombin purification , 2011 .

[127]  S. Venkatraman,et al.  ABA and BAB type triblock copolymers of PEG and PLA: a comparative study of drug release properties and "stealth" particle characteristics. , 2007, International journal of pharmaceutics.

[128]  S. Ganta,et al.  A review of stimuli-responsive nanocarriers for drug and gene delivery. , 2008, Journal of controlled release : official journal of the Controlled Release Society.

[129]  James C. Davis,et al.  Biocompatibility of polymer grafted core/shell iron/carbon nanoparticles. , 2010, Biomaterials.

[130]  Xuesi Chen,et al.  Novel water-soluble and pH-responsive anticancer drug nanocarriers: doxorubicin-PAMAM dendrimer conjugates attached to superparamagnetic iron oxide nanoparticles (IONPs). , 2011, Journal of colloid and interface science.

[131]  M. Yousefpour,et al.  The effects of ageing time on the microstructure and properties of mesoporous silica-hydroxyapatite nanocomposite , 2013 .

[132]  P. Chu,et al.  Magnetite-loaded fluorine-containing polymeric micelles for magnetic resonance imaging and drug delivery. , 2012, Biomaterials.

[133]  C. McCormick,et al.  Advances in the synthesis of amphiphilic block copolymers via RAFT polymerization: stimuli-responsive drug and gene delivery. , 2008, Advanced drug delivery reviews.

[134]  Thommey P. Thomas,et al.  Dendrimer-based multivalent methotrexates as dual acting nanoconjugates for cancer cell targeting. , 2012, European journal of medicinal chemistry.

[135]  Kinam Park,et al.  Environment-sensitive hydrogels for drug delivery , 2001 .

[136]  Peidong Yang,et al.  Inorganic nanotubes: a novel platform for nanofluidics. , 2006, Accounts of chemical research.

[137]  K. Kono,et al.  Synthesis of polyamidoamine dendrimers having poly(ethylene glycol) grafts and their ability to encapsulate anticancer drugs. , 2000, Bioconjugate chemistry.

[138]  Shanshan Huang,et al.  Magnetic Fe3O4@mesoporous silica composites for drug delivery and bioadsorption. , 2012, Journal of colloid and interface science.

[139]  Zhuang Liu,et al.  Drug delivery with carbon nanotubes for in vivo cancer treatment. , 2008, Cancer research.

[140]  B. Forier,et al.  A fast double-stage convergent synthesis of dendritc polyethers , 1996 .

[141]  Avraham Levi,et al.  PEO-PPO-PEO-based poly(ether ester urethane)s as degradable reverse thermo-responsive multiblock copolymers. , 2006, Biomaterials.

[142]  P. Beale,et al.  Synthesis, characterization, activities, cell uptake and DNA binding of trinuclear complex: [{trans-PtCl(NH(3))}(2)mu-{trans-Pt(NH(3))(2-hydroxypyridine)-(H(2)N(CH(2))(6)NH(2))(2)]Cl(4). , 2005, European journal of medicinal chemistry.

[143]  G. Stucky,et al.  Mesoporous and Mesostructured Materials for Optical Applications , 2001 .

[144]  Laurie G Hudson,et al.  Role of polyethylene glycol integrity in specific receptor targeting of carbon nanotubes to cancer cells. , 2009, Nano letters.

[145]  D. Yan,et al.  Synthesis and self-assembly of a hydrophilic, thermo-responsive poly(ethylene oxide) monomethyl ether-block-poly(acrylic acid)-block-poly(N-isopropylacrylamide) copolymer to form micelles for drug delivery , 2011 .

[146]  R. Czarnomysy,et al.  Cytotoxic activity of G3 PAMAM-NH₂ dendrimer-chlorambucil conjugate in human breast cancer cells. , 2011, Environmental toxicology and pharmacology.

[147]  Umesh Gupta,et al.  Dendrimers: novel polymeric nanoarchitectures for solubility enhancement. , 2006, Biomacromolecules.

[148]  E. Kaditi,et al.  Amphiphilic block copolymers by a combination of anionic polymerization and selective post-polymerization functionalization , 2011 .

[149]  J. Rodríguez-Hernández,et al.  Toward 'smart' nano-objects by self-assembly of block copolymers in solution , 2005 .

[150]  R. Zhuo,et al.  Self-assembled thermoresponsive micelles of poly(N-isopropylacrylamide-b-methyl methacrylate). , 2006, Biomaterials.

[151]  Z. J. Zhang,et al.  Synthesis of CoCrFeO4 nanoparticles using microemulsion methods and size-dependent studies of their magnetic properties , 2002 .

[152]  Mario Grassi,et al.  Pharmacokinetic analysis of multi PEG-theophylline conjugates , 2012, Comput. Biol. Chem..

[153]  Maurizio Prato,et al.  Dendrimer-functionalized single-wall carbon nanotubes: synthesis, characterization, and photoinduced electron transfer. , 2006, Journal of the American Chemical Society.

[154]  Ruxandra Gref,et al.  Polysaccharide-decorated nanoparticles. , 2004, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.