Strong convergence theorems for equilibrium problems and fixed point problems in Banach spaces

The paper proposes two new iterative methods for solving pseudomonotone equilibrium problems involving fixed point problems for quasi-$$\phi $$ϕ-nonexpansive mappings in Banach spaces. The proposed algorithms combine the extended extragradient method or the linesearch method with the Halpern iteration. The strong convergence theorems are established under standard assumptions imposed on equilibrium bifunctions and mappings. The results in this paper have generalized and enriched existing algorithms for equilibrium problems in Banach spaces.

[1]  Liu-chuan Zeng,et al.  Hybrid projection method for generalized mixed equilibrium problems, variational inequality problems, and fixed point problems in Banach spaces , 2011 .

[2]  Habtu Zegeye,et al.  A hybrid scheme for finite families of equilibrium, variational inequality and fixed point problems , 2011 .

[3]  Phan Tu Vuong,et al.  Extragradient Methods and Linesearch Algorithms for Solving Ky Fan Inequalities and Fixed Point Problems , 2012, J. Optim. Theory Appl..

[4]  Hong-Kun Xu Inequalities in Banach spaces with applications , 1991 .

[5]  T. D. Quoc,et al.  Extragradient algorithms extended to equilibrium problems , 2008 .

[6]  Isao Yamada,et al.  A subgradient-type method for the equilibrium problem over the fixed point set and its applications , 2009 .

[7]  Jan van Tiel,et al.  Convex Analysis: An Introductory Text , 1984 .

[8]  Giandomenico Mastroeni,et al.  Gap Functions for Equilibrium Problems , 2003, J. Glob. Optim..

[9]  Paul-Emile Maingé,et al.  A Hybrid Extragradient-Viscosity Method for Monotone Operators and Fixed Point Problems , 2008, SIAM J. Control. Optim..

[10]  G. M. Korpelevich The extragradient method for finding saddle points and other problems , 1976 .

[11]  S. Reich,et al.  Asymptotic Behavior of Relatively Nonexpansive Operators in Banach Spaces , 2001 .

[12]  I. Ciorǎnescu Geometry of banach spaces, duality mappings, and nonlinear problems , 1990 .

[13]  Yair Censor,et al.  The Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Space , 2011, J. Optim. Theory Appl..

[14]  Y. Censor,et al.  Iterations of paracontractions and firmaly nonexpansive operators with applications to feasibility and optimization , 1996 .

[15]  Jean Jacques Strodiot,et al.  A new class of hybrid extragradient algorithms for solving quasi-equilibrium problems , 2013, J. Glob. Optim..

[16]  Wataru Takahashi,et al.  A strong convergence theorem for relatively nonexpansive mappings in a Banach space , 2005, J. Approx. Theory.

[17]  S. Reich,et al.  Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings , 1984 .

[18]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[19]  J. Strodiot,et al.  On extragradient-viscosity methods for solving equilibrium and fixed point problems in a Hilbert space , 2015 .

[20]  Paul-Emile Maingé,et al.  Projected subgradient techniques and viscosity methods for optimization with variational inequality constraints , 2010, Eur. J. Oper. Res..

[21]  L. Muu,et al.  Convergence of an adaptive penalty scheme for finding constrained equilibria , 1992 .

[22]  G. Cohen Auxiliary problem principle and decomposition of optimization problems , 1980 .

[23]  I. Konnov Equilibrium Models and Variational Inequalities , 2013 .

[24]  Y. Alber,et al.  Nonlinear Ill-posed Problems of Monotone Type , 2006 .

[25]  S. Reich Book Review: Geometry of Banach spaces, duality mappings and nonlinear problems , 1992 .

[26]  S. Reich Strong convergence theorems for resolvents of accretive operators in Banach spaces , 1980 .

[27]  Yeol Je Cho,et al.  Convergence theorems of common elements for equilibrium problems and fixed point problems in Banach spaces , 2009 .

[28]  A. Moudafi Proximal point algorithm extended to equilibrium problems , 1999 .

[29]  B. Halpern Fixed points of nonexpanding maps , 1967 .

[30]  Van Hieu Dang An extension of hybrid method without extrapolation step to equilibrium problems , 2016 .

[31]  P. Ánh,et al.  Multi-Step Algorithms for solving equilibrium Problems , 2018, Math. Model. Anal..

[32]  Wataru Takahashi,et al.  Strong Convergence Theorem by a New Hybrid Method for Equilibrium Problems and Relatively Nonexpansive Mappings , 2008 .

[33]  Pham Ky Anh,et al.  Parallel hybrid extragradient methods for pseudomonotone equilibrium problems and nonexpansive mappings , 2015, Numerical Algorithms.

[34]  Wataru Takahashi,et al.  Strong Convergence of a Proximal-Type Algorithm in a Banach Space , 2002, SIAM J. Optim..

[35]  C. E. Chidume,et al.  Geometric Properties of Banach Spaces and Nonlinear Iterations , 2009 .

[36]  D. Hieu Hybrid projection methods for equilibrium problems with non-Lipschitz type bifunctions , 2017 .

[37]  Pham Ky Anh,et al.  Modified hybrid projection methods for finding common solutions to variational inequality problems , 2017, Comput. Optim. Appl..

[38]  G. Mastroeni On Auxiliary Principle for Equilibrium Problems , 2003 .

[39]  Dang Van Hieu,et al.  An inertial-like proximal algorithm for equilibrium problems , 2018, Math. Methods Oper. Res..

[40]  Phan Tu Vuong,et al.  A class of shrinking projection extragradient methods for solving non-monotone equilibrium problems in Hilbert spaces , 2016, J. Glob. Optim..

[41]  Sjur Didrik Flåm,et al.  Equilibrium programming using proximal-like algorithms , 1997, Math. Program..

[42]  Y. Alber Metric and Generalized Projection Operators in Banach Spaces: Properties and Applications , 1993, funct-an/9311001.

[43]  Hong-Ku N Xu Another control condition in an iterative method for nonexpansive mappings , 2002, Bulletin of the Australian Mathematical Society.

[44]  Wataru Takahashi,et al.  STRONG AND WEAK CONVERGENCE THEOREMS FOR EQUILIBRIUM PROBLEMS AND RELATIVELY NONEXPANSIVE MAPPINGS IN BANACH SPACES , 2009 .

[45]  Heinz H. Bauschke,et al.  A projection method for approximating fixed points of quasi nonexpansive mappings without the usual demiclosedness condition , 2012, 1211.1639.

[46]  Jean-Jacques Strodiot,et al.  Hybrid Methods for Solving Simultaneously an Equilibrium Problem and Countably Many Fixed Point Problems in a Hilbert Space , 2014, J. Optim. Theory Appl..

[47]  Jen-Chih Yao,et al.  A hybrid iterative scheme for mixed equilibrium problems and fixed point problems , 2008 .

[48]  Dang Van Hieu,et al.  Parallel Extragradient-Proximal Methods for Split Equilibrium Problems , 2015, 1511.02474.

[49]  L. D. Muu,et al.  Regularization Algorithms for Solving Monotone Ky Fan Inequalities with Application to a Nash-Cournot Equilibrium Model , 2009, J. Optimization Theory and Applications.