Common spatial arrangements of backbone fragments in homologous and non-homologous proteins.

[1]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites. , 1908 .

[2]  H. Whitney Congruent Graphs and the Connectivity of Graphs , 1932 .

[3]  L. Pauling,et al.  The pleated sheet, a new layer configuration of polypeptide chains. , 1951, Proceedings of the National Academy of Sciences of the United States of America.

[4]  L. Pauling,et al.  The structure of proteins; two hydrogen-bonded helical configurations of the polypeptide chain. , 1951, Proceedings of the National Academy of Sciences of the United States of America.

[5]  J. Kendrew,et al.  A Three-Dimensional Model of the Myoglobin Molecule Obtained by X-Ray Analysis , 1958, Nature.

[6]  C. Anfinsen,et al.  The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain. , 1961, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Vladimir Prelog,et al.  Spezifikation der molekularen Chiralität , 1966 .

[8]  G. N. Ramachandran,et al.  Conformation of polypeptides and proteins. , 1968, Advances in protein chemistry.

[9]  S. B. Needleman,et al.  A general method applicable to the search for similarities in the amino acid sequence of two proteins. , 1970, Journal of molecular biology.

[10]  Fanica Gavril,et al.  Algorithms for Minimum Coloring, Maximum Clique, Minimum Covering by Cliques, and Maximum Independent Set of a Chordal Graph , 1972, SIAM J. Comput..

[11]  C. Bron,et al.  Algorithm 457: finding all cliques of an undirected graph , 1973 .

[12]  M G Rossmann,et al.  Comparison of super-secondary structures in proteins. , 1973, Journal of molecular biology.

[13]  C. Anfinsen Principles that govern the folding of protein chains. , 1973, Science.

[14]  G. Levi A note on the derivation of maximal common subgraphs of two directed or undirected graphs , 1973 .

[15]  Michael G. Rossmann,et al.  Chemical and biological evolution of a nucleotide-binding protein , 1974, Nature.

[16]  R. Diamond On the comparison of conformations using linear and quadratic transformations , 1976 .

[17]  P Argos,et al.  Exploring structural homology of proteins. , 1976, Journal of molecular biology.

[18]  W. Kabsch A solution for the best rotation to relate two sets of vectors , 1976 .

[19]  C. Chothia,et al.  Structural patterns in globular proteins , 1976, Nature.

[20]  Michael M. Cone,et al.  Molecular structure comparison program for the identification of maximal common substructures , 1977 .

[21]  Robert E. Tarjan,et al.  Finding a Maximum Independent Set , 1976, SIAM J. Comput..

[22]  C. Blake,et al.  Protein–DNA and protein–hormone interactions in prealbumin: a model of the thyroid hormone nuclear receptor? , 1977, Nature.

[23]  G J Williams,et al.  The Protein Data Bank: a computer-based archival file for macromolecular structures. , 1977, Journal of molecular biology.

[24]  J. Richardson beta-Sheet topology and the relatedness of proteins. , 1977, Nature.

[25]  C. Chothia,et al.  Structure of proteins: packing of alpha-helices and pleated sheets. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[26]  T. L. Blundell,et al.  Structural evidence for gene duplication in the evolution of the acid proteases , 1978, Nature.

[27]  C. Tanford,et al.  The hydrophobic effect and the organization of living matter. , 1978, Science.

[28]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[29]  Georg E. Schulz,et al.  Principles of Protein Structure , 1979 .

[30]  A. Mclachlan Gene duplications in the structural evolution of chymotrypsin. , 1979, Journal of molecular biology.

[31]  O. Ptitsyn,et al.  Similarities of protein topologies: evolutionary divergence, functional convergence or principles of folding? , 1980, Quarterly Reviews of Biophysics.

[32]  A. Lesk,et al.  How different amino acid sequences determine similar protein structures: the structure and evolutionary dynamics of the globins. , 1980, Journal of molecular biology.

[33]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[34]  M S Waterman,et al.  Identification of common molecular subsequences. , 1981, Journal of molecular biology.

[35]  George L. Nemhauser,et al.  A polynomial algorithm for maximum weighted vertex packings on graphs without long odd cycles , 1981, Math. Program..

[36]  Peter Willett,et al.  Use of a maximum common subgraph algorithm in the automatic identification of ostensible bond changes occurring in chemical reactions , 1981, J. Chem. Inf. Comput. Sci..

[37]  J. Richardson,et al.  The anatomy and taxonomy of protein structure. , 1981, Advances in protein chemistry.

[38]  W. Kabsch,et al.  Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geometrical features , 1983, Biopolymers.

[39]  C. Chothia Principles that determine the structure of proteins. , 1984, Annual review of biochemistry.

[40]  E. Baker,et al.  Hydrogen bonding in globular proteins. , 1984, Progress in biophysics and molecular biology.

[41]  D. K. Friesen,et al.  A combinatorial algorithm for calculating ligand binding , 1984 .

[42]  Tom Blundell,et al.  The active site of aspartic proteinases , 1991, FEBS letters.

[43]  C. Faerman,et al.  A revision of van der Waals atomic radii for molecular crystals: N, O, F, S, Cl, Se, Br and I bonded to carbon , 1985 .

[44]  M G Rossmann,et al.  Comparison of protein structures. , 1985, Methods in enzymology.

[45]  Egon Balas,et al.  Finding a Maximum Clique in an Arbitrary Graph , 1986, SIAM J. Comput..

[46]  W. Taylor,et al.  The classification of amino acid conservation. , 1986, Journal of theoretical biology.

[47]  William R. Taylor,et al.  A structural model for the retroviral proteases , 1987, Nature.

[48]  R. Williams,et al.  Secondary structure predictions and medium range interactions. , 1987, Biochimica et biophysica acta.

[49]  Y. Chirgadze,et al.  Deduction and systematic classification of spatial motifs of the antiparallel β structure in globular proteins , 1987 .

[50]  O. Ptitsyn,et al.  Why do globular proteins fit the limited set of folding patterns? , 1987, Progress in biophysics and molecular biology.

[51]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[52]  T A Jones,et al.  Refined structure of human carbonic anhydrase II at 2.0 Å resolution , 1988, Proteins.

[53]  David Weininger,et al.  SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules , 1988, J. Chem. Inf. Comput. Sci..

[54]  F. Richards,et al.  Identification of structural motifs from protein coordinate data: Secondary structure and first‐level supersecondary structure * , 1988, Proteins.

[55]  Kenneth A. De Jong,et al.  Using Genetic Algorithms to Solve NP-Complete Problems , 1989, ICGA.

[56]  W R Taylor,et al.  Protein structure alignment. , 1989, Journal of molecular biology.

[57]  S. Kearsley On the orthogonal transformation used for structural comparisons , 1989 .

[58]  R. Lavery,et al.  Describing protein structure: A general algorithm yielding complete helicoidal parameters and a unique overall axis , 1989, Proteins.

[59]  R. Wade,et al.  New hydrogen-bond potentials for use in determining energetically favorable binding sites on molecules of known structure. , 1989, Journal of medicinal chemistry.

[60]  Maria Miller,et al.  Crystal structure of a retroviral protease proves relationship to aspartic protease family , 1989, Nature.

[61]  J. Thornton,et al.  Beta-turns and their distortions: a proposed new nomenclature. , 1990, Protein engineering.

[62]  M J Rooman,et al.  Automatic definition of recurrent local structure motifs in proteins. , 1990, Journal of molecular biology.

[63]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[64]  Gottfried Tinhofer,et al.  A branch and bound algorithm for the maximum clique problem , 1990, ZOR Methods Model. Oper. Res..

[65]  A V Finkelstein,et al.  The classification and origins of protein folding patterns. , 1990, Annual review of biochemistry.

[66]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[67]  P Willett,et al.  Use of techniques derived from graph theory to compare secondary structure motifs in proteins. , 1990, Journal of molecular biology.

[68]  E G Hutchinson,et al.  HERA—A program to draw schematic diagrams of protein secondary structures , 1990, Proteins.

[69]  T. Steitz,et al.  Structural studies of protein–nucleic acid interaction: the sources of sequence-specific binding , 1990, Quarterly Reviews of Biophysics.

[70]  T. Blundell,et al.  Definition of general topological equivalence in protein structures. A procedure involving comparison of properties and relationships through simulated annealing and dynamic programming. , 1990, Journal of molecular biology.

[71]  J. Selbig,et al.  Knowledge-based prediction of protein structures. , 1990, Journal of theoretical biology.

[72]  Professor Dr. George A. Jeffrey,et al.  Hydrogen Bonding in Biological Structures , 1991, Springer Berlin Heidelberg.

[73]  D. Eisenberg,et al.  A method to identify protein sequences that fold into a known three-dimensional structure. , 1991, Science.

[74]  H. Wolfson,et al.  Efficient detection of three-dimensional structural motifs in biological macromolecules by computer vision techniques. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[75]  C. Sander,et al.  Detection of common three‐dimensional substructures in proteins , 1991, Proteins.

[76]  M. Sippl,et al.  Detection of native‐like models for amino acid sequences of unknown three‐dimensional structure in a data base of known protein conformations , 1992, Proteins.

[77]  Joachim Selbig,et al.  Analysis of protein sheet topologies by graph theoretical methods , 1992, Proteins.

[78]  H. Wolfson,et al.  An efficient automated computer vision based technique for detection of three dimensional structural motifs in proteins. , 1992, Journal of biomolecular structure & dynamics.

[79]  P. Argos,et al.  Potential of genetic algorithms in protein folding and protein engineering simulations. , 1992, Protein engineering.

[80]  D. T. Jones,et al.  A new approach to protein fold recognition , 1992, Nature.

[81]  C. Chothia Proteins. One thousand families for the molecular biologist. , 1992, Nature.

[82]  G. Barton,et al.  Multiple protein sequence alignment from tertiary structure comparison: Assignment of global and residue confidence levels , 1992, Proteins.

[83]  A. Godzik,et al.  Topology fingerprint approach to the inverse protein folding problem. , 1992, Journal of molecular biology.

[84]  C. Wallace The curious case of protein splicing: Mechanistic insights suggested by protein semisynthesis , 1993, Protein science : a publication of the Protein Society.

[85]  M. Levitt,et al.  Structural similarity of DNA-binding domains of bacteriophage repressors and the globin core , 1993, Current Biology.

[86]  A. Godzik,et al.  Regularities in interaction patterns of globular proteins. , 1993, Protein engineering.

[87]  P Willett,et al.  Identification of tertiary structure resemblance in proteins using a maximal common subgraph isomorphism algorithm. , 1993, Journal of molecular biology.

[88]  R. Wade,et al.  Further development of hydrogen bond functions for use in determining energetically favorable binding sites on molecules of known structure. 1. Ligand probe groups with the ability to form two hydrogen bonds. , 1993, Journal of medicinal chemistry.

[89]  C. Sander,et al.  Protein structure comparison by alignment of distance matrices. , 1993, Journal of molecular biology.

[90]  R C Glen,et al.  Molecular recognition using a binary genetic search algorithm. , 1993, Journal of molecular graphics.

[91]  Native-like in vivo folding of a circularly permuted jellyroll protein shown by crystal structure analysis. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[92]  P. Willett,et al.  A graph-theoretic approach to the identification of three-dimensional patterns of amino acid side-chains in protein structures. , 1994, Journal of molecular biology.

[93]  I D Campbell,et al.  Building protein structure and function from modular units. , 1994, Trends in biotechnology.

[94]  William Lingran Chen,et al.  Application of the Maximal Common Substructure Algorithm to Automatic Interpretation of 13C-NMR Spectra , 1994, J. Chem. Inf. Comput. Sci..

[95]  T. P. Flores,et al.  An algorithm for automatically generating protein topology cartoons. , 1994, Protein engineering.

[96]  G J Barton,et al.  Structural features can be unconserved in proteins with similar folds. An analysis of side-chain to side-chain contacts secondary structure and accessibility. , 1994, Journal of molecular biology.

[97]  Adam Godzik,et al.  Flexible algorithm for direct multiple alignment of protein structures and sequences , 1994, Comput. Appl. Biosci..

[98]  Gareth Jones,et al.  Matching two-dimensional chemical graphs using genetic algorithms , 1994, J. Chem. Inf. Comput. Sci..

[99]  Janet M. Thornton,et al.  Protein domain superfolds and superfamilies , 1994 .

[100]  P Argos,et al.  The role of side-chain hydrogen bonds in the formation and stabilization of secondary structure in soluble proteins. , 1994, Journal of molecular biology.

[101]  D R Flower Automating the identification and analysis of protein beta-barrels. , 1994, Protein engineering.

[102]  A A Mironov,et al.  Interhelical contacts determining the architecture of alpha-helical globular proteins. , 1994, Journal of biomolecular structure & dynamics.

[103]  R. Lathrop The protein threading problem with sequence amino acid interaction preferences is NP-complete. , 1994, Protein engineering.

[104]  Peter Willett,et al.  Identification of .beta.-sheet motifs, of .psi.-loops, and of patterns of amino acid residues in three-dimensional protein structures using a subgraph-isomorphism algorithm , 1994, J. Chem. Inf. Comput. Sci..

[105]  G M Crippen,et al.  Significance of root-mean-square deviation in comparing three-dimensional structures of globular proteins. , 1994, Journal of molecular biology.

[106]  T. P. Flores,et al.  Multiple protein structure alignment , 1994, Protein science : a publication of the Protein Society.

[107]  W. Taylor,et al.  Folding polypeptide α‐carbon backbones by distance geometry methods , 1994 .