Remarkable progress in thin-film silicon solar cells using high-efficiency triple-junction technology

[1]  B. von Roedern,et al.  Thin-Film Si:H-Based Solar Cells , 2008, Renewable Energy.

[2]  Karsten Bittkau,et al.  Investigation of the impact of the rear‐dielectric/silver back reflector design on the optical performance of thin‐film silicon solar cells by means of detached reflectors , 2013 .

[3]  Soo‐Hyun Kim,et al.  n-Type microcrystalline silicon oxide layer and its application to high-performance back reflectors in thin-film silicon solar cells , 2013 .

[4]  T. Polichetti,et al.  Broadband near-field effects for improved thin film Si solar cells on randomly textured substrates , 2013 .

[5]  P. D. Veneri,et al.  Improved micromorph solar cells by means of mixed‐phase n‐doped silicon oxide layers , 2013 .

[6]  Hyun-Yong Lee,et al.  Microcrystalline Silicon Carbide p-Layer with Wide-Bandgap and Its Application to Single- and Triple-Junction Silicon Thin-Film Solar Cells , 2012 .

[7]  C. Ballif,et al.  Origin of the Voc enhancement with a p-doped nc-SiOx:H window layer in n-i-p solar cells , 2012 .

[8]  S. Guha,et al.  Innovative dual function nc-SiOx:H layer leading to a >16% efficient multi-junction thin-film silicon solar cell , 2011 .

[9]  T. Grundler,et al.  Hydrogenated amorphous silicon oxide containing a microcrystalline silicon phase and usage as an intermediate reflector in thin-film silicon solar cells , 2011 .

[10]  M. Konagai Present Status and Future Prospects of Silicon Thin-Film Solar Cells , 2011 .

[11]  K. Sriprapha,et al.  p-Type hydrogenated silicon oxide thin film deposited near amorphous to microcrystalline phase transition and its application to solar cells , 2011 .

[12]  C. Ballif,et al.  Resistive interlayer for improved performance of thin film silicon solar cells on highly textured substrate , 2010 .

[13]  J. Owens,et al.  Optimization of back reflector for high efficiency hydrogenated nanocrystalline silicon solar cells , 2009 .

[14]  C. Ballif,et al.  Plasmonic absorption in textured silver back reflectors of thin film solar cells , 2008 .

[15]  M. Wuttig,et al.  Experimental studies and limitations of the light trapping and optical losses in microcrystalline silicon solar cells , 2008 .

[16]  M. Zeman,et al.  ZnO:Al films prepared by rf magnetron sputtering applied as back reflectors in thin-film silicon solar cells , 2008 .

[17]  Arvind Shah,et al.  Relation between substrate surface morphology and microcrystalline silicon solar cell performance , 2008 .

[18]  F. Finger,et al.  A constructive combination of antireflection and intermediate-reflector layers for a-Si∕μc-Si thin film solar cells , 2008 .

[19]  P. Buehlmann,et al.  In situ silicon oxide based intermediate reflector for thin-film silicon micromorph solar cells , 2007 .

[20]  Jian Sun,et al.  Influence of front electrode and back reflector electrode on the performances of microcrystalline silicon solar cells , 2006 .

[21]  S. Shimizu,et al.  Key issues for fabrication of high quality amorphous and microcrystalline silicon solar cells , 2006 .

[22]  A. Shah,et al.  Light-induced degradation of thin film amorphous and microcrystalline silicon solar cells , 2005, Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, 2005..

[23]  Thin film silicon solar cells grown near the edge of amorphous to microcrystalline transition , 2004 .

[24]  Subhendu Guha,et al.  Light-induced metastability in hydrogenated nanocrystalline silicon solar cells , 2004 .

[25]  M. Wuttig,et al.  Efforts to improve carrier mobility in radio frequency sputtered aluminum doped zinc oxide films , 2004 .

[26]  Seung Yeop Myong,et al.  Improvement of pin-type amorphous silicon solar cell performance by employing double silicon-carbide p -layer structure , 2004 .

[27]  J. Müller,et al.  Modified Thornton model for magnetron sputtered zinc oxide: film structure and etching behaviour , 2003 .

[28]  A. Matsuda,et al.  Formation of interface defects by enhanced impurity diffusion in microcrystalline silicon solar cells , 2002 .

[29]  A. Matsuda,et al.  Improvement of Voc using carbon added microcrystalline Si p-layer in microcrystalline Si solar cells , 2002 .

[30]  Michio Kondo,et al.  Effects of Substrate Surface Morphology on Microcrystalline Silicon Solar Cells , 2001 .

[31]  Hiroshi Sakai,et al.  Production technology for amorphous silicon-based flexible solar cells , 2001 .

[32]  S. Guha,et al.  Amorphous silicon alloy photovoltaic research—present and future , 2000 .

[33]  Hiroyuki Fujiwara,et al.  Optimization of hydrogenated amorphous silicon p–i–n solar cells with two-step i layers guided by real-time spectroscopic ellipsometry , 1998 .

[34]  Ch. Hof,et al.  Recent Progress in Micromorph Solar Cells , 1998 .

[35]  Ch. Hof,et al.  The "micromorph" solar cell: extending a-Si:H technology towards thin film crystalline silicon , 1996, Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996.

[36]  P. Sichanugrist,et al.  Amorphous silicon oxide and its application to metal/n-i-p/ITO type a-Si solar cells , 1994 .

[37]  Arvind Shah,et al.  Complete microcrystalline p-i-n solar cell—Crystalline or amorphous cell behavior? , 1994 .

[38]  H. Okamoto,et al.  Properties and structure of a‐SiC:H for high‐efficiency a‐Si solar cell , 1982 .

[39]  Yoshihiro Hamakawa,et al.  a‐SiC:H/a‐Si:H heterojunction solar cell having more than 7.1% conversion efficiency , 1981 .

[40]  D. Staebler,et al.  Reversible conductivity changes in discharge‐produced amorphous Si , 1977 .