A Simple Proof for the Existence of “Good” Pairs of Nested Lattices

This paper provides a simplified proof for the existence of nested lattice codebooks allowing to achieve the capacity of the additive white Gaussian noise channel, as well as the optimal rate-distortion tradeoff for a Gaussian source. The proof is self-contained and relies only on basic probabilistic and geometrical arguments. An ensemble of nested lattices that is different, and more elementary, than the one used in the previous proofs is introduced. This ensemble is based on lifting different subcodes of a linear code to the Euclidean space using Construction A. In addition to being simpler, the analysis is less sensitive to the assumption that the additive noise is Gaussian. In particular, for additive ergodic noise channels, it is shown that the achievable rates of the nested lattice coding scheme depend on the noise distribution only via its power. Similarly, the nested lattice source coding scheme attains the same rate-distortion tradeoff for all ergodic sources with the same second moment.

[1]  Rudolf de Buda,et al.  The upper error bound of a new near-optimal code , 1975, IEEE Trans. Inf. Theory.

[2]  Boris D. Kudryashov,et al.  Random Quantization Bounds for Lattices over q -ary Linear Codes , 2007, 2007 IEEE International Symposium on Information Theory.

[3]  Sae-Young Chung,et al.  Capacity of the Gaussian Two-way Relay Channel to within 1/2 Bit , 2009, ArXiv.

[4]  Tamás Linder,et al.  Corrected proof of de Buda's theorem , 1993, IEEE Trans. Inf. Theory.

[5]  Rüdiger L. Urbanke,et al.  Lattice Codes Can Achieve Capacity on the AWGN Channel , 1998, IEEE Trans. Inf. Theory.

[6]  Gregory Poltyrev,et al.  On coding without restrictions for the AWGN channel , 1993, IEEE Trans. Inf. Theory.

[7]  Sae-Young Chung,et al.  Sphere-bound-achieving coset codes and multilevel coset codes , 2000, IEEE Trans. Inf. Theory.

[8]  Pierre Moulin,et al.  On error exponents of modulo lattice additive noise channels , 2006, IEEE Transactions on Information Theory.

[9]  Boris D. Kudryashov,et al.  Random coding bound for the second moment of multidimensional lattices , 2007, Probl. Inf. Transm..

[10]  T. Linder,et al.  Corrected proof of de Buda's theorem (lattice channel codes) , 1993 .

[11]  Hans-Andrea Loeliger,et al.  Averaging bounds for lattices and linear codes , 1997, IEEE Trans. Inf. Theory.

[12]  A. Barg,et al.  Bounds on the Covering Radius of Linear Codes , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).

[13]  Amos Lapidoth,et al.  Nearest neighbor decoding for additive non-Gaussian noise channels , 1996, IEEE Trans. Inf. Theory.

[14]  C. A. Rogers Lattice coverings of space , 1959 .

[15]  Ian F. Blake The Leech Lattice as a Code for the Gaussian Channel , 1971, Inf. Control..

[16]  S. Sandeep Pradhan,et al.  A proof of the existence of good nested lattices , 2007 .

[17]  Michael Gastpar,et al.  Compute-and-Forward: Harnessing Interference Through Structured Codes , 2009, IEEE Transactions on Information Theory.

[18]  Yuval Kochman,et al.  Lattice Coding for Signals and Networks: Side-information problems , 2014 .

[19]  S. Shamai,et al.  Nested linear/lattice codes for Wyner-Ziv encoding , 1998, 1998 Information Theory Workshop (Cat. No.98EX131).

[20]  Cong Ling,et al.  Achieving AWGN Channel Capacity With Lattice Gaussian Coding , 2014, IEEE Transactions on Information Theory.

[21]  Simon Litsyn,et al.  Lattices which are good for (almost) everything , 2005, IEEE Transactions on Information Theory.

[22]  N. J. A. Sloane,et al.  A fast encoding method for lattice codes and quantizers , 1983, IEEE Trans. Inf. Theory.

[23]  Uri Erez,et al.  Lattice Strategies for the Dirty Multiple Access Channel , 2007, IEEE Transactions on Information Theory.

[24]  G. David Forney,et al.  Multidimensional constellations. II. Voronoi constellations , 1989, IEEE J. Sel. Areas Commun..

[25]  Paul L. Zador,et al.  Asymptotic quantization error of continuous signals and the quantization dimension , 1982, IEEE Trans. Inf. Theory.

[26]  Nicola di Pietro,et al.  On infinite and finite lattice constellations for the additive white Gaussian Noise Channel. (Constellations finies et infinies de réseaux de points pour le canal AWGN) , 2014 .

[27]  Sae-Young Chung,et al.  Nested Lattice Codes for Gaussian Relay Networks With Interference , 2011, IEEE Transactions on Information Theory.

[28]  Uri Erez,et al.  Achieving 1/2 log (1+SNR) on the AWGN channel with lattice encoding and decoding , 2004, IEEE Transactions on Information Theory.

[29]  Shlomo Shamai,et al.  Nested linear/Lattice codes for structured multiterminal binning , 2002, IEEE Trans. Inf. Theory.

[30]  Meir Feder,et al.  On lattice quantization noise , 1996, IEEE Trans. Inf. Theory.

[31]  Uri Erez,et al.  The Approximate Sum Capacity of the Symmetric Gaussian $K$ -User Interference Channel , 2012, IEEE Transactions on Information Theory.

[32]  Sae-Young Chung,et al.  Capacity of the Gaussian Two-Way Relay Channel to Within ${1\over 2}$ Bit , 2009, IEEE Transactions on Information Theory.

[33]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[34]  Abhay Parekh,et al.  The Approximate Capacity of the Many-to-One and One-to-Many Gaussian Interference Channels , 2008, IEEE Transactions on Information Theory.

[35]  Uri Erez,et al.  The Approximate Sum Capacity of the Symmetric Gaussian $K$ -User Interference Channel , 2014, IEEE Trans. Inf. Theory.