Hydrothermal synthesis, structure, Raman spectroscopy, and self-irradiation studies of 248Cm(IO3)3
暂无分享,去创建一个
[1] A. Hector,et al. Hydrothermal Synthesis of Rare Earth Iodates from the Corresponding Periodates: II1). Synthesis and Structures of Ln(IO3)3 (Ln = Pr, Nd, Sm, Eu, Gd, Tb, Ho, Er) and Ln(IO3)3 · 2H2O (Ln = Eu, Gd, Dy, Er, Tm, Yb) , 2004 .
[2] C. Pickard,et al. Crystal structures of curium compounds: an ab initio study , 2003 .
[3] B. Scott,et al. Structural and spectroscopic trends in actinyl iodates of uranium, neptunium, and plutonium. , 2003, Inorganic chemistry.
[4] B. Scott,et al. Synthesis and characterization of a channel framework in K3Am3(IO3)12·HIO3 , 2003 .
[5] T. Albrecht‐Schmitt,et al. Cation-cation interactions in neptunyl(V) compounds: hydrothermal preparation and structural characterization of NpO2(IO3) and alpha- and beta-AgNpO2(SeO3). , 2003, Inorganic chemistry.
[6] B. Scott,et al. Structural characterization of the first hydrothermally synthesized plutonium compound, PuO2(IO3)2 x H2O. , 2003, Chemical communications.
[7] P. Halasyamani,et al. Hydrothermal preparation, structures, and NLO properties of the rare earth molybdenyl iodates, RE(MoO2)(IO3)4(OH) [RE = Nd, Sm, Eu]. , 2003, Inorganic chemistry.
[8] A. Hector,et al. Hydrothermal Synthesis of Rare Earth Iodates from the Corresponding Periodates: Structures of Sc(IO3)3, Y(IO3)3 · 2 H2O, La(IO3)3 · 1/2 H2O and Lu(IO3)3 · 2 H2O , 2002 .
[9] T. Albrecht‐Schmitt,et al. Cation Effects on the Formation of the One-Dimensional Uranyl Iodates A2[(UO2)3(IO3)4O2] (A=K, Rb, Tl) and AE[(UO2)2(IO3)2O2] (H2O) (AE=Sr, Ba, Pb) , 2001 .
[10] T. Albrecht‐Schmitt,et al. Excision of Uranium Oxide Chains and Ribbons in the Novel One-Dimensional Uranyl Iodates K2[(UO2)3(IO3)4O2] and Ba[(UO2)2(IO3)2O2](H2O) , 2001 .
[11] H. Lutz,et al. Single-crystal Raman studies on nickel iodate dihydrate, Ni(IO3)2·2H2O†‡ , 2001 .
[12] T. Albrecht‐Schmitt,et al. Structural Relationships, Interconversion, and Optical Properties of the Uranyl Iodates, UO2(IO3)2 and UO2(IO3)2(H2O): A Comparison of Reactions under Mild and Supercritical Conditions , 2001 .
[13] H. Lutz,et al. Intramolecular coupling of BrO stretching vibrations in solid bromates, infrared and Raman spectroscopic studies on M(BrO3)2.6H2O (M = Mg, Co, Ni, Zn) and Ni(ClO3)2.6H2O. , 2000, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.
[14] H. D. Lutz,et al. IR‐ und Raman‐Spektren der isotypen Iodathydrate M(IO3)2 · 4 H2O (M = Mg, Ni, Co); Kristallstruktur von Co(IO3)2 · 4 H2O , 1998 .
[15] J. Grice,et al. Georgeericksenite, Na6CaMg(IO3)6(CrO4)2(H2O)12, a new mineral from Oficina Chacabuco, Chile: Description and crystal structure , 1998 .
[16] H. Lutz,et al. High-temperature Raman spectroscopic studies on nickel iodates , 1997 .
[17] R. Blessing,et al. An empirical correction for absorption anisotropy. , 1995, Acta crystallographica. Section A, Foundations of crystallography.
[18] P. Burns,et al. The crystal structure of dietzeite, Ca 2 H 2 O(IO 3 ) 2 (CrO 4 ), a heteropolyhedral framework mineral , 1993 .
[19] H. D. Lutz,et al. Pb(IO3)2I - Das erste Halogenat eines zweiwertigen Hauptgruppenmetalls mit Schichtenstruktur - Kristallstruktur, IR- und Ramanspektren , 1993 .
[20] Michael O'Keeffe,et al. Bond-valence parameters for solids , 1991 .
[21] H. Lutz,et al. Single‐crystal Raman studies on Sr(ClO3)2 and BrO3− and IO3− ions matrix isolated in Sr(ClO3)2 , 1990 .
[22] H. Ammon,et al. Structure of samarium(III) iodate monohydrate , 1989 .
[23] H. Lutz,et al. Infrared and Raman studies of halate ions matrix isolated in Sr(ClO3)2 and Ba(ClO3)2·H2O type host lattices , 1988 .
[24] I. D. Brown,et al. Bond‐valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database , 1985 .
[25] H. Lutz,et al. Infrared and single crystal Raman studies of alkaline earth chlorate, bromate and iodate monohydrates and of halate ions matrix isolated in Ba(ClO3)2·H2Otype host lattices , 1985 .
[26] S. Abrahams,et al. Pyroelectric 3La(IO3)3⋅HIO3⋅7H2O. Crystal structure of the transition metal iodates. V. , 1978 .
[27] S. Abrahams,et al. Paramagnetic Gd(IO3)3. Crystal structure of the transition metal iodates. IV , 1977 .
[28] R. D. Shannon. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .
[29] K. Nassau,et al. Transition metal iodates. VII. Crystallographic and nonlinear optic survey of the 4f-iodates , 1976 .
[30] K. Nassau,et al. Transition metal iodates. VI. Preparation and characterization of the larger lanthanide iodates , 1975 .
[31] S. Abrahams,et al. Pyroelectric Nd(IO3)3⋅H2O. Crystal structure of the transition‐metal iodates. II , 1975 .
[32] A. S. Cooper,et al. Transition metal iodates. V. Preparation and characterization of the smaller lanthanide iodates , 1974 .
[33] J. R. Peterson,et al. Single crystal and powder diffraction studies of curium-248 trichloride, 248CmCl3 , 1973 .
[34] J. R. Peterson,et al. The dioxide of 248Cm , 1971 .
[35] J. Fuger,et al. Self-radiation effects on the lattice parameter of 244CmO2 , 1971 .
[36] O. Bonner,et al. Raman Studies of Iodic Acid and Sodium Iodate , 1965 .
[37] T. S. Oey,et al. The System Sodium Chlorate-Sodium Chloride Water at Various Temperatures , 1958 .
[38] D. Hall. Chemical effects in fission product recoil—II: The decomposition of uranyl iodate , 1958 .