A 1.17-Megapixel CMOS Image Sensor With 1.5 A/D Conversions per Digital CDS Pixel Readout and Four In-Pixel Gain Steps

This paper presents a low-power <inline-formula> <tex-math notation="LaTeX">$1232\,\,\times \,\, 952$ </tex-math></inline-formula> pixel back side-illuminated CMOS image sensor with a pixel pitch of 2.8 <inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula>. It is implemented in a 90-nm CMOS image sensor technology. We propose a method to reduce the pixel readout energy consumption by computing two digital correlated double-sampling (DCDS) results with three analog–digital (A/D) conversions, thereby using an average of 1.5 A/D conversions per pixel. The conventional DCDS readout requires two A/D conversions per pixel. The DCDS operation uses 27.3 pJ/pixel and achieves a figure-of-merit (FoM) of 0.064<inline-formula> <tex-math notation="LaTeX">$\,\,\text {nJ}\cdot \text {e}^{-}$ </tex-math></inline-formula>, which is the lowest published to date. A pixel is designed with four gain steps that allow 175 <inline-formula> <tex-math notation="LaTeX">$\mu \text{V}/\text{e}^{-}$ </tex-math></inline-formula> conversion gain and 2.33 e<sup>−</sup> read noise at the highest pixel gain setting and 33.400 e<sup>−</sup> full well capacity at the lowest pixel gain setting. The pixel design avoids the need for dedicated capacitors in the pixel and instead uses capacitance already existing in the current readout row and the previous row.

[1]  Jeremy Holleman,et al.  A Low-Power High-Precision Comparator With Time-Domain Bulk-Tuned Offset Cancellation , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.

[2]  Yi Shen,et al.  Low-Power Single-Ended SAR ADC Using Symmetrical DAC Switching for Image Sensors With Passive CDS and PGA Technique , 2018, IEEE Transactions on Circuits and Systems I: Regular Papers.

[3]  Won Namgoong,et al.  Comparator Power Reduction in Low-Frequency SAR ADC Using Optimized Vote Allocation , 2015, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[4]  Oh-Kyong Kwon,et al.  A 1.92-Megapixel CMOS Image Sensor With Column-Parallel Low-Power and Area-Efficient SA-ADCs , 2012, IEEE Transactions on Electron Devices.

[5]  I. Takayanagi,et al.  A very low column FPN and row temporal noise 8.9 M-pixel, 60 fps CMOS image sensor with 14bit column parallel SA- ADC , 2008, 2008 IEEE Symposium on VLSI Circuits.

[6]  Yoshikazu Nitta,et al.  A 1/4-inch 3.9Mpixel low-power event-driven back-illuminated stacked CMOS image sensor , 2018, 2018 IEEE International Solid - State Circuits Conference - (ISSCC).

[7]  Sohei Manabe,et al.  A 1280 x 1080 4 . 2 μ m Split-diode Pixel HDR Sensor in 110 nm BSI CMOS Process , 2015 .

[8]  Jeff Beck,et al.  A dual-conversion-gain video sensor with dewarping and overlay on a single chip , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[9]  Daehwa Paik,et al.  A low-noise self-calibrating dynamic comparator for high-speed ADCs , 2008, 2008 IEEE Asian Solid-State Circuits Conference.

[10]  Eric A. M. Klumperink,et al.  A 10-bit Charge-Redistribution ADC Consuming 1.9 $\mu$W at 1 MS/s , 2010, IEEE Journal of Solid-State Circuits.

[11]  Hoi-Jun Yoo,et al.  A Four-Camera VGA-Resolution Capsule Endoscope System With 80-Mb/s Body Channel Communication Transceiver and Sub-Centimeter Range Capsule Localization , 2019, IEEE Journal of Solid-State Circuits.

[12]  George Jie Yuan,et al.  A 1/2.5 inch VGA 400 fps CMOS Image Sensor With High Sensitivity for Machine Vision , 2014, IEEE Journal of Solid-State Circuits.

[13]  Donald B. Hondongwa,et al.  A Review of the Pinned Photodiode for CCD and CMOS Image Sensors , 2014, IEEE Journal of the Electron Devices Society.

[14]  Bedabrata Pain,et al.  CMOS active pixel sensor with on-chip successive approximation analog-to-digital converter , 1997 .

[15]  Anne-Johan Annema,et al.  A 30fJ/comparison dynamic bias comparator , 2017, ESSCIRC 2017 - 43rd IEEE European Solid State Circuits Conference.

[16]  Jaehyuk Choi,et al.  An Energy/Illumination-Adaptive CMOS Image Sensor With Reconfigurable Modes of Operations , 2015, IEEE Journal of Solid-State Circuits.

[17]  Isao Takayanagi,et al.  An Over 90 dB Intra-Scene Single-Exposure Dynamic Range CMOS Image Sensor Using a 3.0 μm Triple-Gain Pixel Fabricated in a Standard BSI Process † , 2018, Sensors.

[18]  Boris Murmann,et al.  On the use of redundancy in successive approximation A/D converters , 2013 .

[19]  Shoji Kawahito,et al.  Column-Parallel ADCs for CMOS Image Sensors and Their FoM-Based Evaluations , 2018, IEICE Trans. Electron..

[20]  Amine Bermak,et al.  A 64 fJ/step 9-bit SAR ADC Array With Forward Error Correction and Mixed-Signal CDS for CMOS Image Sensors , 2014, IEEE Transactions on Circuits and Systems I: Regular Papers.

[21]  Pierluigi Nuzzo,et al.  Noise Analysis of Regenerative Comparators for Reconfigurable ADC Architectures , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[22]  Arthur H. M. van Roermund,et al.  A 10b/12b 40 kS/s SAR ADC With Data-Driven Noise Reduction Achieving up to 10.1b ENOB at 2.2 fJ/Conversion-Step , 2013, IEEE Journal of Solid-State Circuits.

[23]  Yong-bin Kim,et al.  A novel low-power, low-offset, and high-speed CMOS dynamic latched comparator , 2011, Analog Integrated Circuits and Signal Processing.

[24]  Zhihua Wang,et al.  A low power CMOS image sensor design for wireless endoscopy capsule , 2008, 2008 IEEE Biomedical Circuits and Systems Conference.

[25]  Brian P. Ginsburg,et al.  An energy-efficient charge recycling approach for a SAR converter with capacitive DAC , 2005, 2005 IEEE International Symposium on Circuits and Systems.

[26]  Andrea Baschirotto,et al.  An 820μW 9b 40MS/s Noise-Tolerant Dynamic-SAR ADC in 90nm Digital CMOS , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[27]  Johannes Solhusvik,et al.  A 1280x960 3.75um pixel CMOS imager with Triple Exposure HDR , 2009 .

[28]  Seong-Kwan Hong,et al.  An Area-Efficient and Low-Power 12-b SAR/Single-Slope ADC Without Calibration Method for CMOS Image Sensors , 2016, IEEE Transactions on Electron Devices.

[29]  Hidekazu Takahashi,et al.  A 1.8e $^{-}_{\mathrm {rms}} $ Temporal Noise Over 110-dB-Dynamic Range 3.4 $\mu \text{m}$ Pixel Pitch Global-Shutter CMOS Image Sensor With Dual-Gain Amplifiers SS-ADC, Light Guide Structure, and Multiple-Accumulation Shutter , 2018, IEEE Journal of Solid-State Circuits.

[30]  Keiji Mabuchi,et al.  A 1/2.3-inch 10.3Mpixel 50frame/s Back-Illuminated CMOS image sensor , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).