The stop and go particle swarm: A swarm with a dynamically adapting population size

In this study, we propose the stop and go particle swarm optimization (PSO) algorithm, a new method to dynamically adapt the PSO population size. Stop and go PSO (SG-PSO) takes advantage of the fact that in practical problems there is a limit to the required accuracy of the optimization result. In SG-PSO, particles are stopped when they have approximately reached the required accuracy. Stopped particles do not consume valuable function evaluations. Still, the information contained in the stopped particles' state is not lost, but rather as the swarm evolves, the particles may become active again, behaving as a memory for the swarm. In addition, as an extension to the SG-PSO algorithm we propose the mixed SG-PSO (MSG-PSO) algorithm. In the MSG-PSO algorithm each particle is given a required accuracy, and through the accuracy settings global search and local search can be balanced. Both SG-PSO and MSG-PSO algorithms are straightforward modifications to the standard PSO algorithm. The SG-PSO algorithm shows strong improvements over the standard PSO algorithm on multimodal benchmark functions from the PSO literature while approximately equivalent results are observed on unimodal benchmark functions. The MSG-PSO algorithm outperforms the standard PSO algorithm on both unimodal and multimodal benchmark functions.

[1]  Roberto Battiti,et al.  The gregarious particle swarm optimizer (G-PSO) , 2006, GECCO '06.

[2]  James Kennedy,et al.  Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[3]  José Neves,et al.  The fully informed particle swarm: simpler, maybe better , 2004, IEEE Transactions on Evolutionary Computation.

[4]  P. J. Angeline,et al.  Using selection to improve particle swarm optimization , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[5]  Yuhui Shi,et al.  Particle swarm optimization: developments, applications and resources , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[6]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[7]  Saman K. Halgamuge,et al.  Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients , 2004, IEEE Transactions on Evolutionary Computation.

[8]  R. Eberhart,et al.  Comparing inertia weights and constriction factors in particle swarm optimization , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[9]  M. Clerc,et al.  The swarm and the queen: towards a deterministic and adaptive particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[10]  Martin Middendorf,et al.  A hierarchical particle swarm optimizer , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[11]  R. Eberhart,et al.  Empirical study of particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[12]  J. S. Vesterstrom,et al.  Division of labor in particle swarm optimisation , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[13]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[14]  M. Clerc Stagnation Analysis in Particle Swarm Optimisation or What Happens When Nothing Happens , 2006 .

[15]  Masafumi Hagiwara,et al.  Balancing Exploitation and Exploration in Particle Swarm Optimization: Velocity-based Reinitialization , 2008 .