Improved seed methods for symmetric positive definite linear equations with multiple right‐hand sides
暂无分享,去创建一个
[1] Andreas Stathopoulos,et al. Computing and Deflating Eigenvalues While Solving Multiple Right-Hand Side Linear Systems with an Application to Quantum Chromodynamics , 2007, SIAM J. Sci. Comput..
[2] Tony F. Chan,et al. Analysis of Projection Methods for Solving Linear Systems with Multiple Right-Hand Sides , 1997, SIAM J. Sci. Comput..
[3] D. O’Leary. The block conjugate gradient algorithm and related methods , 1980 .
[4] A. Frommer,et al. Exploiting Structure in Krylov Subspace Methods for the Wilson Fermion Matrix , 1997 .
[5] R. Narayanan,et al. Alternative to domain wall fermions , 2000, hep-lat/0005004.
[6] H. V. D. Vorst,et al. An iterative solution method for solving f ( A ) x = b , using Krylov subspace information obtained for the symmetric positive definite matrix A , 1987 .
[7] Efstratios Gallopoulos,et al. An Iterative Method for Nonsymmetric Systems with Multiple Right-Hand Sides , 1995, SIAM J. Sci. Comput..
[8] R. Mittra,et al. A conjugate gradient algorithm for the treatment of multiple incident electromagnetic fields , 1989 .
[9] Simon Heybrock,et al. Krylov subspace methods and the sign function: multishifts and deflation in the non-Hermitian case , 2009, 0910.2927.
[10] L. Reichel,et al. A stable Richardson iteration method for complex linear systems , 1988 .
[11] G. Meurant. The Lanczos and Conjugate Gradient Algorithms: From Theory to Finite Precision Computations , 2006 .
[12] Ronald B. Morgan,et al. Deflated and Restarted Symmetric Lanczos Methods for Eigenvalues and Linear Equations with Multiple Right-Hand Sides , 2008, SIAM J. Sci. Comput..
[13] H. Simon. Analysis of the symmetric Lanczos algorithm with reorthogonalization methods , 1984 .
[14] R. Freund. On conjugate gradient type methods and polynomial preconditioners for a class of complex non-hermitian matrices , 1990 .
[15] S. Ashby. Polynomial Preconditioning for Conjugate Gradient Methods , 1988 .
[16] J. Grcar. Analyses of the lanczos algorithm and of the approximation problem in richardson's method , 1981 .
[17] Henk A. van der Vorst,et al. Approximate solutions and eigenvalue bounds from Krylov subspaces , 1995, Numer. Linear Algebra Appl..
[18] Charles Frederick Smith. The Performance of Preconditioned Iterative Methods in Computational Electromagnetics , 1987 .
[19] A. Frommer. Linear systems solvers — recent developments and implications for lattice computations , 1996, hep-lat/9608074.
[20] Eric L. Miller,et al. QMR-Based Projection Techniques for the Solution of Non-Hermitian Systems with Multiple Right-Hand Sides , 2001, SIAM J. Sci. Comput..
[21] M. Luscher. Local coherence and deflation of the low quark modes in lattice QCD , 2007, 0706.2298.
[22] Y. Saad,et al. Practical Use of Some Krylov Subspace Methods for Solving Indefinite and Nonsymmetric Linear Systems , 1984 .
[23] Frédéric Guyomarc'h,et al. An Augmented Conjugate Gradient Method for Solving Consecutive Symmetric Positive Definite Linear Systems , 2000, SIAM J. Matrix Anal. Appl..
[24] H. V. D. Vorst,et al. The rate of convergence of Conjugate Gradients , 1986 .
[25] Y. Saad,et al. Practical Use of Polynomial Preconditionings for the Conjugate Gradient Method , 1985 .
[26] Ronald B. Morgan,et al. Restarting the Nonsymmetric Lanczos Algorithm for Eigenvalues and Linear Equations Including Multiple Right-Hand Sides , 2011, SIAM J. Sci. Comput..
[27] Andreas Stathopoulos,et al. Extending the eigCG algorithm to nonsymmetric Lanczos for linear systems with multiple right‐hand sides , 2013, Numer. Linear Algebra Appl..
[28] G. Meurant,et al. The Lanczos and conjugate gradient algorithms in finite precision arithmetic , 2006, Acta Numerica.
[29] M. Saunders,et al. Solution of Sparse Indefinite Systems of Linear Equations , 1975 .
[30] Y. Saad,et al. On the Lánczos method for solving symmetric linear systems with several right-hand sides , 1987 .
[31] R. Morgan,et al. Deflated Iterative Methods for Linear Equations with Multiple Right-Hand Sides , 2004, math-ph/0405053.
[32] Kesheng Wu,et al. Thick-Restart Lanczos Method for Symmetric Eigenvalue Problems , 1998, IRREGULAR.
[33] B. Parlett. A new look at the Lanczos algorithm for solving symmetric systems of linear equations , 1980 .
[34] Julien Langou,et al. Solving large linear systems with multiple right-hand sides , 2003 .
[35] R C Brower,et al. Adaptive multigrid algorithm for the lattice Wilson-Dirac operator. , 2010, Physical review letters.
[36] H. Simon. The Lanczos algorithm with partial reorthogonalization , 1984 .
[37] R. Freund,et al. A block QMR algorithm for non-Hermitian linear systems with multiple right-hand sides , 1997 .
[38] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[39] Ronald B. Morgan,et al. GMRES WITH DEFLATED , 2008 .
[40] P. Forcrand. Progress on lattice QCD algorithms , 1995, hep-lat/9509082.
[41] H. V. D. Vorst,et al. Numerical methods for the QCDd overlap operator. I. Sign-function and error bounds , 2002, hep-lat/0202025.
[42] Anne Greenbaum,et al. Predicting the Behavior of Finite Precision Lanczos and Conjugate Gradient Computations , 2015, SIAM J. Matrix Anal. Appl..
[43] Kesheng Wu,et al. Thick-Restart Lanczos Method for Large Symmetric Eigenvalue Problems , 2000, SIAM J. Matrix Anal. Appl..
[44] R. Morgan,et al. Deflation of eigenvalues for iterative methods in lattice QCD , 2003, hep-lat/0309068.
[45] Andrea Benaglia,et al. Transverse-Momentum and Pseudorapidity Distributions of Charged Hadrons in pp Collisions at root s=7 TeV , 2010 .
[46] Christopher C. Paige,et al. The computation of eigenvalues and eigenvectors of very large sparse matrices , 1971 .
[47] B. Parlett,et al. The Lanczos algorithm with selective orthogonalization , 1979 .
[48] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[49] Eric de Sturler,et al. Recycling Krylov Subspaces for Sequences of Linear Systems , 2006, SIAM J. Sci. Comput..
[50] M. Gutknecht. BLOCK KRYLOV SPACE METHODS FOR LINEAR SYSTEMS WITH MULTIPLE RIGHT-HAND SIDES : AN , 2005 .
[51] R. Morgan. Restarted block-GMRES with deflation of eigenvalues , 2005 .
[52] Ronald B. Morgan,et al. A Restarted GMRES Method Augmented with Eigenvectors , 1995, SIAM J. Matrix Anal. Appl..
[53] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[54] U. Heller,et al. Study of chiral symmetry in quenched QCD using the overlap Dirac operator , 1998, hep-lat/9811030.
[55] C. Lanczos. Chebyshev polynomials in the solution of large-scale linear systems , 1952, ACM '52.
[56] Andreas Stathopoulos,et al. Extending the eigCG algorithm to non-symmetric linear systems with multiple right-hand sides , 2009, 0911.2285.