Bayesian Inference Using Intermediate Distribution Based on Coarse Multiscale Model for Time Fractional Diffusion Equations

In the paper, we present a strategy for accelerating posterior inference for unknown inputs in time fractional diffusion models. In many inference problems, the posterior may be concentrated in a small portion of the entire prior support. It will be much more efficient if we build and simulate a surrogate only over the significant region of the posterior. To this end, we construct a coarse model using Generalized Multiscale Finite Element Method (GMsFEM), and solve a least-squares problem for the coarse model with a regularizing Levenberg-Marquart algorithm. An intermediate distribution is built based on the approximate sampling distribution. For Bayesian inference, we use GMsFEM and least-squares stochastic collocation method to obtain a reduced coarse model based on the intermediate distribution. To increase the sampling speed of Markov chain Monte Carlo, the DREAM$_\text{ZS}$ algorithm is used to explore the surrogate posterior density, which is based on the surrogate likelihood and the intermediate distribution. The proposed method with lower gPC order gives the approximate posterior as accurate as the the surrogate model directly based on the original prior. A few numerical examples for time fractional diffusion equations are carried out to demonstrate the performance of the proposed method with applications of the Bayesian inversion.

[1]  E Weinan,et al.  The Heterogeneous Multi-Scale Method , 2002 .

[2]  Ling Guo,et al.  Stochastic Collocation Algorithms Using l1-Minimization for Bayesian Solution of Inverse Problems , 2015, SIAM J. Sci. Comput..

[3]  J. Banavar,et al.  The Heterogeneous Multi-Scale Method , 1992 .

[4]  Y. Marzouk,et al.  A stochastic collocation approach to Bayesian inference in inverse problems , 2009 .

[5]  E. Somersalo,et al.  Statistical and computational inverse problems , 2004 .

[6]  A. Doicu,et al.  Numerical Regularization for Atmospheric Inverse Problems , 2010 .

[7]  Jasper A. Vrugt,et al.  High‐dimensional posterior exploration of hydrologic models using multiple‐try DREAM(ZS) and high‐performance computing , 2012 .

[8]  Jonathan C. Mattingly,et al.  Diffusion limits of the random walk metropolis algorithm in high dimensions , 2010, 1003.4306.

[9]  Yalchin Efendiev,et al.  An efficient two‐stage Markov chain Monte Carlo method for dynamic data integration , 2005 .

[10]  H. Tchelepi,et al.  Multi-scale finite-volume method for elliptic problems in subsurface flow simulation , 2003 .

[11]  Jun S. Liu,et al.  Monte Carlo strategies in scientific computing , 2001 .

[12]  Hongguang Sun,et al.  A fractal Richards' equation to capture the non-Boltzmann scaling of water transport in unsaturated media. , 2013, Advances in water resources.

[13]  D. S. Ivaschenko,et al.  Numerical methods for solving inverse problems for time fractional diffusion equation with variable coefficient , 2009 .

[14]  Habib N. Najm,et al.  Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems , 2008, J. Comput. Phys..

[15]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[16]  Alexandre H. Thi'ery,et al.  Optimal Scaling and Diffusion Limits for the Langevin Algorithm in High Dimensions , 2011, 1103.0542.

[17]  Wenjuan Gu,et al.  Numerical inversions for space-dependent diffusion coefficient in the time fractional diffusion equation , 2012 .

[18]  Andrew Gelman,et al.  Handbook of Markov Chain Monte Carlo , 2011 .

[19]  Yalchin Efendiev,et al.  Generalized multiscale finite element methods (GMsFEM) , 2013, J. Comput. Phys..

[20]  Dongxiao Zhang,et al.  Stochastic analysis of unsaturated flow with probabilistic collocation method , 2009 .

[21]  M. Weiss,et al.  Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells. , 2004, Biophysical journal.

[22]  James Martin,et al.  A Stochastic Newton MCMC Method for Large-Scale Statistical Inverse Problems with Application to Seismic Inversion , 2012, SIAM J. Sci. Comput..

[23]  Lijian Jiang,et al.  Multiscale model reduction method for Bayesian inverse problems of subsurface flow , 2016, J. Comput. Appl. Math..

[24]  N. MacDonald Nonlinear dynamics , 1980, Nature.

[25]  Michael Presho,et al.  A Resourceful Splitting Technique with Applications to Deterministic and Stochastic Multiscale Finite Element Methods , 2012, Multiscale Model. Simul..

[26]  D. Higdon,et al.  Accelerating Markov Chain Monte Carlo Simulation by Differential Evolution with Self-Adaptive Randomized Subspace Sampling , 2009 .

[27]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[28]  Masahiro Yamamoto,et al.  Coefficient inverse problem for a fractional diffusion equation , 2013 .

[29]  Khachik Sargsyan,et al.  Enhancing ℓ1-minimization estimates of polynomial chaos expansions using basis selection , 2014, J. Comput. Phys..

[30]  L. Richardson,et al.  Atmospheric Diffusion Shown on a Distance-Neighbour Graph , 1926 .

[31]  J. Rosenthal,et al.  Optimal scaling for various Metropolis-Hastings algorithms , 2001 .

[32]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[33]  Xinguang He,et al.  A stochastic model reduction method for nonlinear unconfined flow with multiple random input fields , 2017, Stochastic Environmental Research and Risk Assessment.

[34]  Karen Willcox,et al.  Surrogate and reduced-order modeling: a comparison of approaches for large-scale statistical inverse problems [Chapter 7] , 2010 .

[35]  Ralph C. Smith,et al.  Uncertainty Quantification: Theory, Implementation, and Applications , 2013 .

[36]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[37]  S. E. Ahmed,et al.  Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference , 2008, Technometrics.

[38]  Yalchin Efendiev,et al.  Multiscale finite element methods for high-contrast problems using local spectral basis functions , 2011, J. Comput. Phys..

[39]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[40]  Grégoire Allaire,et al.  A Multiscale Finite Element Method for Numerical Homogenization , 2005, Multiscale Model. Simul..