Generalized Benders’ Decomposition for topology optimization problems

This article considers the non-linear mixed 0–1 optimization problems that appear in topology optimization of load carrying structures. The main objective is to present a Generalized Benders’ Decomposition (GBD) method for solving single and multiple load minimum compliance (maximum stiffness) problems with discrete design variables to global optimality. We present the theoretical aspects of the method, including a proof of finite convergence and conditions for obtaining global optimal solutions. The method is also linked to, and compared with, an Outer-Approximation approach and a mixed 0–1 semi definite programming formulation of the considered problem. Several ways to accelerate the method are suggested and an implementation is described. Finally, a set of truss topology optimization problems are numerically solved to global optimality.

[1]  Arkadi Nemirovski,et al.  Robust Truss Topology Design via Semidefinite Programming , 1997, SIAM J. Optim..

[2]  M. Kojima,et al.  Linear Algebra for Semidefinite Programming , 1997 .

[3]  Salvador Perez Canto,et al.  Application of Benders' decomposition to power plant preventive maintenance scheduling , 2008, Eur. J. Oper. Res..

[4]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[5]  Wolfgang Achtziger,et al.  Structural Topology Optimization with Eigenvalues , 2007, SIAM J. Optim..

[6]  A. M. Geoffrion Duality in Nonlinear Programming: A Simplified Applications-Oriented Development , 1971 .

[7]  Josef Stoer,et al.  Numerische Mathematik 1 , 1989 .

[8]  Matteo Fischetti,et al.  Combinatorial Benders' Cuts for Mixed-Integer Linear Programming , 2006, Oper. Res..

[9]  Arthur M. Geoffrion,et al.  Elements of Large-Scale Mathematical Programming Part I: Concepts , 1970 .

[10]  K. Svanberg,et al.  On the convexity and concavity of compliances , 1994 .

[11]  M. Stolpe,et al.  Truss topology optimization with discrete design variables—Guaranteed global optimality and benchmark examples , 2007 .

[12]  Thomas L. Magnanti,et al.  Accelerating Benders Decomposition: Algorithmic Enhancement and Model Selection Criteria , 1981, Oper. Res..

[13]  Alysson M. Costa A survey on benders decomposition applied to fixed-charge network design problems , 2005, Comput. Oper. Res..

[14]  B. Craven,et al.  Linear programming with matrix variables , 1981 .

[15]  Mathias Stolpe,et al.  Global optimization of discrete truss topology design problems using a parallel cut-and-branch method , 2008 .

[16]  Anthony Vannelli,et al.  Computing Globally Optimal Solutions for Single-Row Layout Problems Using Semidefinite Programming and Cutting Planes , 2008, INFORMS J. Comput..

[17]  Ignacio E. Grossmann,et al.  An outer-approximation algorithm for a class of mixed-integer nonlinear programs , 1986, Math. Program..

[18]  Extension of the generalized benders' decomposition , 1986 .

[19]  B. Datta Numerical Linear Algebra and Applications , 1995 .

[20]  Michel Gendreau,et al.  Accelerating Benders Decomposition by Local Branching , 2009, INFORMS J. Comput..

[21]  Wolfgang Achtziger,et al.  Global optimization of truss topology with discrete bar areas—Part I: theory of relaxed problems , 2008, Comput. Optim. Appl..

[22]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[23]  Sven Leyffer,et al.  Solving mixed integer nonlinear programs by outer approximation , 1994, Math. Program..

[24]  Peter Deuflhard,et al.  Numerical Analysis in Modern Scientific Computing , 2003 .

[25]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[26]  Takahito Kuno,et al.  Global optimization of nonconvex MINLP by a hybrid branch-and-bound and revised general benders decomposition approach , 2003 .

[27]  I. Grossmann,et al.  Convergence properties of generalized benders decomposition , 1991 .

[28]  K. Svanberg The method of moving asymptotes—a new method for structural optimization , 1987 .

[29]  J. F. Benders Partitioning procedures for solving mixed-variables programming problems , 1962 .

[30]  A. M. Geoffrion Generalized Benders decomposition , 1972 .

[31]  A. Hohmann,et al.  Numerical Analysis in Modern Scientific Computing: An Introduction , 2003 .

[32]  Srinivas Bollapragada,et al.  Optimal Design of Truss Structures by Logic-Based Branch and Cut , 2001, Oper. Res..

[33]  M. Bendsøe,et al.  Topology Optimization: "Theory, Methods, And Applications" , 2011 .

[34]  Krister Svanberg,et al.  A Class of Globally Convergent Optimization Methods Based on Conservative Convex Separable Approximations , 2002, SIAM J. Optim..

[35]  Arthur M. Geoffrion,et al.  Elements of Large Scale Mathematical Programming Part II: Synthesis of Algorithms and Bibliography , 1970 .