A Novel Deep Learning-Based Spatiotemporal Fusion Method for Combining Satellite Images with Different Resolutions Using a Two-Stream Convolutional Neural Network

[1]  Dino Ienco,et al.  DuPLO: A DUal view Point deep Learning architecture for time series classificatiOn , 2018, ISPRS Journal of Photogrammetry and Remote Sensing.

[2]  Chao Zeng,et al.  Missing Data Reconstruction in Remote Sensing Image With a Unified Spatial–Temporal–Spectral Deep Convolutional Neural Network , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[3]  Peter M. Atkinson,et al.  Spatio-temporal fusion for daily Sentinel-2 images , 2018 .

[4]  Zhenyu Tan,et al.  An Enhanced Deep Convolutional Model for Spatiotemporal Image Fusion , 2019, Remote. Sens..

[5]  Bo Huang,et al.  Spatiotemporal Reflectance Fusion via Sparse Representation , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[6]  Tim R. McVicar,et al.  Assessing the accuracy of blending Landsat–MODIS surface reflectances in two landscapes with contrasting spatial and temporal dynamics: A framework for algorithm selection , 2013 .

[7]  Xin Zhang,et al.  Combining Linear Pixel Unmixing and STARFM for Spatiotemporal Fusion of Gaofen-1 Wide Field of View Imagery and MODIS Imagery , 2018, Remote. Sens..

[8]  Yunshan Meng,et al.  An Enhanced Linear Spatio-Temporal Fusion Method for Blending Landsat and MODIS Data to Synthesize Landsat-Like Imagery , 2018, Remote. Sens..

[9]  Albert Y. Zomaya,et al.  Spatiotemporal Fusion of MODIS and Landsat-7 Reflectance Images via Compressed Sensing , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[10]  Xiaolin Zhu,et al.  An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions , 2010 .

[11]  Matthew F. McCabe,et al.  A Spatio-Temporal Enhancement Method for medium resolution LAI (STEM-LAI) , 2016, Int. J. Appl. Earth Obs. Geoinformation.

[12]  Cornelius Senf,et al.  Mapping land cover in complex Mediterranean landscapes using Landsat: Improved classification accuracies from integrating multi-seasonal and synthetic imagery , 2015 .

[13]  Qingshan Liu,et al.  Spatiotemporal Satellite Image Fusion Using Deep Convolutional Neural Networks , 2018, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[14]  Peijuan Wang,et al.  Fusing Landsat and MODIS Data for Vegetation Monitoring , 2015, IEEE Geoscience and Remote Sensing Magazine.

[15]  Jocelyn Chanussot,et al.  Pansharpening Quality Assessment Using the Modulation Transfer Functions of Instruments , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[16]  A. Bovik,et al.  A universal image quality index , 2002, IEEE Signal Processing Letters.

[17]  Jungho Im,et al.  Spatiotemporal downscaling approaches for monitoring 8-day 30 m actual evapotranspiration , 2017 .

[18]  Xiaolin Zhu,et al.  Spatiotemporal Fusion of Multisource Remote Sensing Data: Literature Survey, Taxonomy, Principles, Applications, and Future Directions , 2018, Remote. Sens..

[19]  Lisheng Song,et al.  Estimation of daily evapotranspiration and irrigation water efficiency at a Landsat-like scale for an arid irrigation area using multi-source remote sensing data , 2018, Remote Sensing of Environment.

[20]  F. Gao,et al.  Mapping daily leaf area index at 30 m resolution over a meadow steppe area by fusing Landsat, Sentinel-2A and MODIS data , 2018, International Journal of Remote Sensing.

[21]  Bo Huang,et al.  A Rigorously-Weighted Spatiotemporal Fusion Model with Uncertainty Analysis , 2017, Remote. Sens..

[22]  Liangpei Zhang,et al.  A Multiscale and Multidepth Convolutional Neural Network for Remote Sensing Imagery Pan-Sharpening , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[23]  Liping Di,et al.  Deriving High Spatiotemporal Remote Sensing Images Using Deep Convolutional Network , 2018, Remote. Sens..

[24]  Baojun Zhao,et al.  Fast and Accurate Spatiotemporal Fusion Based Upon Extreme Learning Machine , 2016, IEEE Geoscience and Remote Sensing Letters.

[25]  Lizhe Wang,et al.  Spatiotemporal Fusion of Remote Sensing Images with Structural Sparsity and Semi-Coupled Dictionary Learning , 2016, Remote. Sens..

[26]  Curtis E. Woodcock,et al.  Continuous monitoring of land change activities and post-disturbance dynamics from Landsat time series: A test methodology for REDD+ reporting , 2020 .

[27]  Mathew R. Schwaller,et al.  On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[28]  Rebekka R. E. Artz,et al.  Potential for using remote sensing to estimate carbon fluxes across northern peatlands - A review. , 2018, The Science of the total environment.

[29]  Liangpei Zhang,et al.  A Spatial and Temporal Nonlocal Filter-Based Data Fusion Method , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[30]  Xiaoshuang Ma,et al.  Learning a Dilated Residual Network for SAR Image Despeckling , 2017, Remote. Sens..

[31]  Feng Gao,et al.  A Hybrid Color Mapping Approach to Fusing MODIS and Landsat Images for Forward Prediction , 2018, Remote. Sens..

[32]  Liang-pei Zhang,et al.  Long-term and fine-scale satellite monitoring of the urban heat island effect by the fusion of multi-temporal and multi-sensor remote sensed data: A 26-year case study of the city of Wuhan in China , 2016 .

[33]  Xianhong Xie,et al.  Land cover classification of finer resolution remote sensing data integrating temporal features from time series coarser resolution data , 2014 .

[34]  P. Leitão,et al.  Characterizing 32 years of shrub cover dynamics in southern Portugal using annual Landsat composites and machine learning regression modeling , 2018, Remote Sensing of Environment.

[35]  Bo Huang,et al.  Spatiotemporal Satellite Image Fusion Through One-Pair Image Learning , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[36]  Liangpei Zhang,et al.  An Error-Bound-Regularized Sparse Coding for Spatiotemporal Reflectance Fusion , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[37]  Alan C. Bovik,et al.  A Statistical Evaluation of Recent Full Reference Image Quality Assessment Algorithms , 2006, IEEE Transactions on Image Processing.

[38]  Yunhao Chen,et al.  Combining kernel-driven and fusion-based methods to generate daily high-spatial-resolution land surface temperatures , 2019, Remote Sensing of Environment.

[39]  Qiang Zhang,et al.  Hyperspectral Image Denoising Employing a Spatial–Spectral Deep Residual Convolutional Neural Network , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[40]  Xiang Zhao,et al.  Generating High Spatio-Temporal Resolution Fractional Vegetation Cover by Fusing GF-1 WFV and MODIS Data , 2019, Remote. Sens..

[41]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[42]  Bo Huang,et al.  A generalization of spatial and temporal fusion methods for remotely sensed surface parameters , 2015 .

[43]  Michael A. Lefsky,et al.  A flexible spatiotemporal method for fusing satellite images with different resolutions , 2016 .

[44]  Lifan Chen,et al.  Dynamic monitoring of the Poyang Lake wetland by integrating Landsat and MODIS observations , 2018 .