Experimental study coupled with thermodynamic assessment of the NiSO4–K2SO4 quasi binary system

[1]  Michael Müller,et al.  Thermodynamic description of the ternary systems of the core sulphate system Na2SO4–K2SO4–MgSO4–CaSO4 , 2021 .

[2]  Michael Müller,et al.  Critical thermodynamic evaluation of the binary sub-systems of the core sulphate system Na2SO4–K2SO4–MgSO4–CaSO4 , 2021 .

[3]  Michael Müller,et al.  Role of Temperature in Na2SO4–K2SO4 Deposit Induced Type II Hot Corrosion of NiAl Coating on a Commercial Ni‐Based Superalloy , 2020, Advanced Engineering Materials.

[4]  Michael Müller,et al.  Thermodynamics of the Ca(NO3)2 – NaNO3 system , 2019 .

[5]  Stacy Gates-Rector,et al.  The Powder Diffraction File: a quality materials characterization database , 2019, Powder Diffraction.

[6]  K. Hack,et al.  A NEW MULTIPURPOSE THERMODYNAMIC DATABASE FOR OXIDE SYSTEMS , 2019, РАСПЛАВЫ.

[7]  B. Reisner,et al.  Variable temperature PXRD investigation of the phase changes during the dehydration of potassium Tutton salts , 2018, Journal of Thermal Analysis and Calorimetry.

[8]  D. Lindberg,et al.  The K 2 SO 4 –CaSO 4 System and Its Role in Fouling and Slagging During High-Temperature Processes , 2018 .

[9]  D. Shifler The Increasing Complexity of Hot Corrosion , 2017 .

[10]  Marie-Aline Van Ende,et al.  FactSage thermochemical software and databases, 2010–2016 , 2016 .

[11]  E. Lalla,et al.  Dielectric Properties and Thermal Decomposition of K2Ni(SO4)2 Crystals , 2016, Journal of Electronic Materials.

[12]  Michael Müller,et al.  Experimental studies on NiSO4 by thermal analysis and calorimetry , 2014 .

[13]  Elena Yazhenskikh,et al.  A Novel Thermodynamic Database for Slag Systems and Refractory Materials , 2012 .

[14]  F. Pettit Hot Corrosion of Metals and Alloys , 2011 .

[15]  Hans Leo Lukas,et al.  Computational Thermodynamics: The Calphad Method , 2007 .

[16]  Michael Müller,et al.  Critical thermodynamic evaluation of oxide systems relevant to fuel ashes and slags Part 2: Alkali oxide–alumina systems , 2006 .

[17]  Theodore M. Besmann,et al.  Thermochemical Modeling of Oxide Glasses , 2004 .

[18]  Mariette Hellenbrandt,et al.  The Inorganic Crystal Structure Database (ICSD)—Present and Future , 2004 .

[19]  Norman S. Bornstein,et al.  Reviewing sulfidation corrosion—Yesterday and today , 1996 .

[20]  E. Salje,et al.  Phase transitions in langbeinites I: Crystal chemistry and structures of K-double sulfates of the langbeinite type M2+ + K2(SO4)3, M+ +=Mg, Ni, Co, Zn, Ca , 1986 .

[21]  H. Tagawa Thermal decomposition temperatures of metal sulfates , 1984 .

[22]  F. Pettit,et al.  Introduction to the high-temperature oxidation of metals , 2006 .

[23]  D. Whittle,et al.  Thermodynamics of Molten Sulfate Mixtures , 1982 .

[24]  S. Iwai,et al.  Structure reinvestigation of the high‐temperature form of K2SO4 , 1980 .

[25]  M. Askar,et al.  Thermal decomposition of some metal sulphates , 1975 .

[26]  G. W. Goward,et al.  Mechanisms for the hot corrosion of nickel-base alloys , 1973 .

[27]  J. A. Mcginnety Redetermination of the structures of potassium sulphate and potassium chromate: the effect of electrostatic crystal forces upon observed bond lengths , 1972 .

[28]  J. J. Rowe,et al.  The binary system K2SO4CaSO4 , 1965 .

[29]  T. Förland,et al.  Transition Point Depression and its Structural Interpretation in the Binary System Sodium Sulfate-Potassium Sulfate. , 1959 .

[30]  P. I. Fedorov,et al.  STUDY OF SODIUM SULFATE-COBALT SULFATE, AND SODIUM SULFATE-NICKEL SULFATE SYSTEMS , 1956 .

[31]  B. F. Naylor,et al.  High-Temperature Heat Contents of Aluminum Oxide, Aluminum Sulfate, Potassium Sulfate, Ammonium Sulfate and Ammonium Bisulfate1 , 1945 .