Mirror symmetry and rational curves on quintic threefolds: a guide for mathematicians

We give a mathematical account of a recent string theory calcula- tion which predicts the number of rational curves on the generic quintic three- fold. Our account involves the interpretation of Yukawa couplings in terms of variations of Hodge structure, a new q-expansion principle for functions on the moduli space of Calabi-Yau manifolds, and the "mirror symmetry" phe- nomenon recently observed by string theorists. DEPARTMENT OF MATHEMATICS, DUKE UNIVERSITY, DURHAM, NORTH CAROLINA 27706 E-mail address: drm@math.duke.edu This content downloaded from 157.55.39.224 on Wed, 14 Dec 2016 04:59:36 UTC All use subject to http://about.jstor.org/terms

[1]  J. G. Thompson,et al.  Some Numerology between the Fischer-Griess Monster and the Elliptic Modular Function , 1979 .

[2]  S. Roan THE MIRROR OF CALABI-YAU ORBIFOLD , 1991 .

[3]  P. Griffiths Topics in transcendental algebraic geometry , 1984 .

[4]  E. Martinec Algebraic Geometry and Effective Lagrangians , 1989 .

[5]  C. Vafa,et al.  Calabi-Yau manifolds and renormalization group flows , 1989 .

[6]  B. Greene,et al.  Duality in {Calabi-Yau} Moduli Space , 1990 .

[7]  M. Reid The moduli space of 3-folds withK=0 may nevertheless be irreducible , 1987 .

[8]  S. Cecotti N=2 supergravity, type IIB superstrings, and algebraic geometry , 1990 .

[9]  P. Griffiths,et al.  Infinitesimal variations of hodge structure (I) , 1983 .

[10]  C. Lütken,et al.  Quantum algebraic geometry of superstring compactifications , 1991 .

[11]  S. Katz On the niteness of rational curves on quintic threefolds , 1986 .

[12]  S. Roan ON CALABI-YAU ORBIFOLDS IN WEIGHTED PROJECTIVE SPACES , 1990 .

[13]  P. Candelas Yukawa couplings between (2,1)-forms , 1987 .

[14]  C. Lütken,et al.  Geometry of mirror manifolds , 1991 .

[15]  H. Verlinde,et al.  ON MODULI SPACES OF CONFORMAL FIELD THEORIES WITH C > =1 , 1988 .

[16]  M. Reid Minimal Models of Canonical 3-Folds , 1983 .

[17]  D. Gepner Exactly solvable string compactifications on manifolds of SU(N) holonomy , 1987 .

[18]  G. Tian Smoothness of the Universal Deformation Space of Compact Calabi-Yau Manifolds and Its Peterson-Weil Metric , 1987 .

[19]  P. Griffiths Topics in Transcendental Algebraic Geometry. (AM-106) , 1984 .

[20]  Günter Ewald,et al.  CONVEX BODIES AND ALGEBRAIC GEOMETRY , 1985 .

[21]  S. Cecotti N=2 LANDAU-GINZBURG VS. CALABI-YAU σ-MODELS: NON-PERTURBATIVE ASPECTS , 1991 .

[22]  W. Schmid Variation of hodge structure: The singularities of the period mapping , 1973 .

[23]  S. Roan On the generalization of Kummer surfaces , 1989 .

[24]  A. Perelomov,et al.  Description of a class of superstring compactifications related to semi-simple Lie algebras , 1987 .

[25]  B. Greene,et al.  Some Exact Results on the Superpotential from Calabi-Yau Compactifications , 1988 .

[26]  C. Lütken,et al.  Construction and couplings of mirror manifolds , 1990 .

[27]  L. Dixon SOME WORLD SHEET PROPERTIES OF SUPERSTRING COMPACTIFICATIONS, ON ORBIFOLDS AND OTHERWISE , 1987 .

[28]  F. Scattone,et al.  Type III degenerations of K3 surfaces , 1986 .

[29]  David Mumford,et al.  Toroidal Embeddings I , 1973 .

[30]  A. Todorov The Weil-Petersson geometry of the moduli space ofSU(n≧3) (Calabi-Yau) manifolds I , 1989 .

[31]  M. Lynker,et al.  Calabi-Yau manifolds in weighted P4 , 1990 .

[32]  Nicholas P. Warner,et al.  Chiral rings in N = 2 superconformal theories , 1989 .

[33]  A. Landman On the Picard-Lefschetz transformation for algebraic manifolds acquiring general singularities , 1973 .

[34]  E. Witten,et al.  New manifolds for superstring compactification , 1985 .

[35]  Chad Schoen On the geometry of a special determinantal hypersurface associated to the Mumford-Horrocks vector bundle. , 1986 .

[36]  F. Bogomolov Hamiltonian Kählerian manifolds , 1978 .

[37]  M. Dine Nonperturbative Effects on the String World Sheet (Ii) , 1988 .

[38]  S. Yau,et al.  Calabi's conjecture and some new results in algebraic geometry. , 1977, Proceedings of the National Academy of Sciences of the United States of America.