Identification of small molecules inhibiting diguanylate cyclases to control bacterial biofilm development

Biofilm formation by pathogenic bacteria is an important virulence factor in the development of numerous chronic infections, thereby causing a severe health burden. Many of these infections cannot be resolved, as bacteria in biofilms are resistant to the host’s immune defenses and antibiotic therapy. An urgent need for new strategies to treat biofilm-based infections is critically needed. Cyclic di-GMP (c-di-GMP) is a widely conserved second-messenger signal essential for biofilm formation. The absence of this signalling system in higher eukaryotes makes it an attractive target for the development of new anti-biofilm agents. In this study, the results of an in silico pharmacophore-based screen to identify small-molecule inhibitors of diguanylate cyclase (DGC) enzymes that synthesize c-di-GMP are described. Four small molecules, LP 3134, LP 3145, LP 4010 and LP 1062 that antagonize these enzymes and inhibit biofilm formation by Pseudomonas aeruginosa and Acinetobacter baumannii in a continuous-flow system are reported. All four molecules dispersed P. aeruginosa biofilms and inhibited biofilm development on urinary catheters. One molecule dispersed A. baumannii biofilms. Two molecules displayed no toxic effects on eukaryotic cells. These molecules represent the first compounds identified from an in silico screen that are able to inhibit DGC activity to prevent biofilm formation.

[1]  A. C. Edmunds,et al.  Cyclic Di-GMP Modulates the Disease Progression of Erwinia amylovora , 2013, Journal of bacteriology.

[2]  D. Lebeaux,et al.  Full and Broad-Spectrum In Vivo Eradication of Catheter-Associated Biofilms Using Gentamicin-EDTA Antibiotic Lock Therapy , 2012, Antimicrobial Agents and Chemotherapy.

[3]  Joshua R. Smith,et al.  Identification of Small Molecules That Antagonize Diguanylate Cyclase Enzymes To Inhibit Biofilm Formation , 2012, Antimicrobial Agents and Chemotherapy.

[4]  C. Struve,et al.  Biofilm formation of Klebsiella pneumoniae on urethral catheters requires either type 1 or type 3 fimbriae , 2012, FEMS immunology and medical microbiology.

[5]  D. Rasko,et al.  Genome Sequences of Four Divergent Multidrug-Resistant Acinetobacter baumannii Strains Isolated from Patients with Sepsis or Osteomyelitis , 2012, Journal of bacteriology.

[6]  Peter D. Newell,et al.  Systematic Analysis of Diguanylate Cyclases That Promote Biofilm Formation by Pseudomonas fluorescens Pf0-1 , 2011, Journal of bacteriology.

[7]  D. Anderson,et al.  Multidrug-resistant chronic osteomyelitis complicating war injury in Iraqi civilians. , 2011, The Journal of trauma.

[8]  A. G. Bobrov,et al.  Systematic analysis of cyclic di‐GMP signalling enzymes and their role in biofilm formation and virulence in Yersinia pestis , 2011, Molecular microbiology.

[9]  G. Ehrlich,et al.  Direct Demonstration of Staphylococcus Biofilm in an External Ventricular Drain in a Patient with a History of Recurrent Ventriculoperitoneal Shunt Failure , 2010, Pediatric Neurosurgery.

[10]  S. Dallo,et al.  Insights into Acinetobacter War-Wound Infections, Biofilms, and Control , 2010, Advances in skin & wound care.

[11]  S. Dowd,et al.  Chronic wounds and the medical biofilm paradigm. , 2010, Journal of wound care.

[12]  C. Wittmann,et al.  Bmc Microbiology , 2004 .

[13]  H. Sondermann,et al.  Structural analysis of the GGDEF-EAL domain-containing c-di-GMP receptor FimX. , 2009, Structure.

[14]  Paul Stoodley,et al.  Evolving concepts in biofilm infections , 2009, Cellular microbiology.

[15]  Zhao-Xun Liang,et al.  Enzymatic synthesis of c-di-GMP using a thermophilic diguanylate cyclase. , 2009, Analytical biochemistry.

[16]  D. McDougald,et al.  Pseudomonas aeruginosa PAO1 Preferentially Grows as Aggregates in Liquid Batch Cultures and Disperses upon Starvation , 2009, PloS one.

[17]  Peter D. Newell,et al.  LapD is a bis-(3′,5′)-cyclic dimeric GMP-binding protein that regulates surface attachment by Pseudomonas fluorescens Pf0–1 , 2009, Proceedings of the National Academy of Sciences.

[18]  V. Nagarajan,et al.  The Role of msa in Staphylococcus aureus Biofilm Formation , 2008, BMC Microbiology.

[19]  G. Ehrlich,et al.  Direct demonstration of viable Staphylococcus aureus biofilms in an infected total joint arthroplasty. A case report. , 2008, The Journal of bone and joint surgery. American volume.

[20]  H. Sondermann,et al.  Phosphorylation-Independent Regulation of the Diguanylate Cyclase WspR , 2008, PLoS biology.

[21]  H. Mobley,et al.  Complicated Catheter-Associated Urinary Tract Infections Due to Escherichia coli and Proteus mirabilis , 2008, Clinical Microbiology Reviews.

[22]  A. Camilli,et al.  Roles of cyclic diguanylate in the regulation of bacterial pathogenesis. , 2007, Annual review of microbiology.

[23]  R. Deora,et al.  The Bordetella Bps Polysaccharide Is Critical for Biofilm Development in the Mouse Respiratory Tract , 2007, Journal of bacteriology.

[24]  P. Cotter,et al.  c-di-GMP-mediated regulation of virulence and biofilm formation. , 2007, Current opinion in microbiology.

[25]  R. H. Gross,et al.  Phosphate‐dependent modulation of c‐di‐GMP levels regulates Pseudomonas fluorescens Pf0‐1 biofilm formation by controlling secretion of the adhesin LapA , 2007, Molecular microbiology.

[26]  J. M. Dow,et al.  The HD-GYP domain, cyclic di-GMP signaling, and bacterial virulence to plants. , 2006, Molecular plant-microbe interactions : MPMI.

[27]  U. Jenal,et al.  Mechanisms of cyclic-di-GMP signaling in bacteria. , 2006, Annual review of genetics.

[28]  D. Hassett,et al.  BdlA, a Chemotaxis Regulator Essential for Biofilm Dispersion in Pseudomonas aeruginosa , 2006, Journal of bacteriology.

[29]  J. M. Dow,et al.  Cyclic Di-GMP Signaling in Bacteria: Recent Advances and New Puzzles , 2006, Journal of bacteriology.

[30]  Garth D Ehrlich,et al.  Direct detection of bacterial biofilms on the middle-ear mucosa of children with chronic otitis media. , 2006, JAMA.

[31]  U. Römling,et al.  Phenotypic Convergence Mediated by GGDEF-Domain-Containing Proteins , 2005, Journal of bacteriology.

[32]  Michael Y. Galperin,et al.  C‐di‐GMP: the dawning of a novel bacterial signalling system , 2005, Molecular microbiology.

[33]  Andrew J. Schmidt,et al.  The Ubiquitous Protein Domain EAL Is a Cyclic Diguanylate-Specific Phosphodiesterase: Enzymatically Active and Inactive EAL Domains , 2005, Journal of bacteriology.

[34]  S. Molin,et al.  Characterization of starvation-induced dispersion in Pseudomonas putida biofilms. , 2005, Environmental microbiology.

[35]  Mark Gomelsky,et al.  Cyclic Diguanylate Is a Ubiquitous Signaling Molecule in Bacteria: Insights into Biochemistry of the GGDEF Protein Domain , 2005, Journal of bacteriology.

[36]  U. Römling,et al.  GGDEF and EAL domains inversely regulate cyclic di‐GMP levels and transition from sessility to motility , 2004, Molecular microbiology.

[37]  Michael Y. Galperin,et al.  Bacterial signal transduction network in a genomic perspective. , 2004, Environmental microbiology.

[38]  B. Trautner,et al.  Role of biofilm in catheter-associated urinary tract infection. , 2004, American journal of infection control.

[39]  Paul Stoodley,et al.  Bacterial biofilms: from the Natural environment to infectious diseases , 2004, Nature Reviews Microbiology.

[40]  P. Stewart,et al.  A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance , 2003, Nature.

[41]  D. Davies,et al.  Understanding biofilm resistance to antibacterial agents , 2003, Nature Reviews Drug Discovery.

[42]  S. Lory,et al.  Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen , 2000, Nature.

[43]  P. Stewart,et al.  Role of Antibiotic Penetration Limitation in Klebsiella pneumoniae Biofilm Resistance to Ampicillin and Ciprofloxacin , 2000, Antimicrobial Agents and Chemotherapy.

[44]  J. Costerton,et al.  Microbial Biofilms , 2011 .

[45]  N. Raffaelli,et al.  Monitoring of diguanylate cyclase activity and of cyclic-di-GMP biosynthesis by whole-cell assays suitable for high-throughput screening of biofilm inhibitors , 2009, Applied Microbiology and Biotechnology.

[46]  R. Grimer,et al.  The long-term risks of infection and amputation with limb salvage surgery using endoprostheses. , 2009, Recent results in cancer research. Fortschritte der Krebsforschung. Progres dans les recherches sur le cancer.

[47]  P Stoodley,et al.  Survival strategies of infectious biofilms. , 2005, Trends in microbiology.

[48]  F. Lombardo,et al.  Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. , 2001, Advanced drug delivery reviews.